

From supervised to unsupervised anomaly detection in Internet Traffic

Philippe Owezarski LAAS-CNRS, Toulouse, France owe@laas.fr

- Anomalies: definition and problematics
- ▶ Traffic characteristics Anomaly detection issues
- Supervised anomaly detection
	- A detailed example
- Unsupervised anomaly detection
	- A detailed example
- Conclusion

- \triangleright Traffic anomalies (on a link)
	- 4 One or several occurrences that change the way traffic is flowing in the network
- **Consequences**
	- 4 Performance decrease
	- ◆ QoS degradation

- 4 Several projects on traffic anomalies detection arised in the past
	- They rely in general on simple statistics on traffic characteristics
		- But they lack by a bad knowledge on traffic characteristics
			- \rightarrow Limited efficiency

- ⁴ Non Gaussian, non Poisson statistics
- **Long Range Dependence (LRD), Strong** correlations
- \rightarrow Traffic can look different according to the granularity of observation
- \rightarrow And...

…**Traffic is highly variable !**

Link Utilization: bandwidth

Link utilization: packets

Profile based IDS issues

350

Traffic profiles in IDS do not consider such variability

- False positive rate is high
- \rightarrow Impossible to fix reliable thresholds

300 250 nombre de paquets
di
co 100 50 10000 20000 25000 35000 40000 15000 30000 temps en secondes

Temporal evolution of the number of TCP/SYN packets

A traffic profile cannot be based only on some averages (non Gaussian) \rightarrow High level statistics are required

From supervised to unsupervised anomaly detection

- □ Current Anomaly Detection (AD) approaches are based on an "acquired knowledge" perspective
	- ^à Signature based
	- \rightarrow Supervised approaches

Signature-based AD

^q Detect WHAT I ALREADY KNOW

(+) Highly effective to detect what it is programmed to alert on (-) Cannot defend the network against unknown attacks (-) Signatures are expensive to produce: human manual inspection

Detect what is different from WHAT I KNOW

(+) It can detect new anomalies out-of the baseline (-) Requires training on anomaly-free traffic (-) Robust and adaptive models are difficult to conceive

Internet Traffic

What model for a non Gaussian and long memory process ?

The Gamma-Farima model based AD approach

Marginal laws

 \rightarrow Distributions of empirical probabilities LBL-TCP-3

- ⁴ Poisson model? Exponential law? Gaussian?
- ⁴ What aggregation level to select?

LAAS **Traffic Correlation (SRD and LRD) CNRS**

 relation between LRD , network usage and queue sizes in routers

Joint modelling of 1st and $2nd$ orders statistics

 \rightarrow Packet aggregated count process: $X_{\lambda}(k)$ $X_{\lambda}(k) = \#$ pkt during [k Δ , (k+1) Δ]

or

AAC

- \rightarrow Bytes aggregated count process: W_{λ}(k) $W_{\lambda}(k) = #$ bytes during $[k\Delta, (k+1)\Delta]$
- **q 1st. PDFs of marginals as gamma laws** Note: one fit for each Δ **a** 2nd. Covariance (or spectrum) with LRD Covariance of a farima model

 $1/\alpha \approx$ distance to Gaussian Scale parameter β : multiplicative factor

LAAS **CNRS**

LAAS **Long memory from a farima model**

Long range dependence covariance is a non-summable power-law \rightarrow spectrum $f_{X\Lambda}(v)$:

$$
f_{X\Delta}(v) \sim C|v|^{-\gamma}, |v|\lozenge 0, \text{ with } 0 < \gamma < 1
$$

- \triangleright Farima = fractionnaly integrated ARMA
	- $1.$ Fractional integration with parameter $d \rightarrow$ LRD with $y=2d$
	- 2. Short range correlation of an $ARMA(1, 1)$ \rightarrow parameters θ , ϕ

$$
\int_{X_{\Delta}} (\nu) = \sigma_{\varepsilon}^{2} \left| 1 - e^{-i2\pi \nu} \right|^{-2d} \frac{\left| 1 - \theta e^{-i2\pi \nu} \right|^{2}}{\left| 1 - \phi e^{-i2\pi \nu} \right|^{2}}
$$

 $\Delta = 10$ ms

 0.12

 0.1

 0.08

 0.06

 0.04

 0.02

 0.025

 $0.02 -$

 0.015

 0.01

 0.005

 0 ^{\circ}

 0.01

0.008

0.006

0.004

 0.002

 $\frac{1}{100}$

 0_o

 $\Delta = 100$ ms

 $\Delta = 400$ ms

Γ^α,^β **– farima (**φ*, d,* θ**) fits**

Γ^α,^β **– farima (**φ*, d,* θ**) fits**

DDoS & FC: Γ_{α,β} marginal fits

DDoS Flash Crowd

- $\alpha =$ shape parameter, $1/\alpha$ quantifies the gap with a Gaussian law
- β = scale parameter \rightarrow decreases during DDoS attack
- → DDoS attack accelerates the convergence towards a Gaussian distribution of traces, and decreases the fluctuation scale around the average traffic

-
- \triangleright Model for characterizing Internet traffic which works with and without anomalies
- \rightarrow Some parameters change differently in the presence of a legitimate (flash crowd) or illegitimate (DDoS) anomaly
- \rightarrow How to use such model for an efficient and robust profile based IDS?

- ⁴ Select a reference window
- \rightarrow Segment the trace into sliding windows of duration T
- \rightarrow For a window at time I:
	- **Aggregated trace at scales** $\Delta = 2j$ **,** $j = 1,...,J$
	- **E** Estimation of parameters : $\alpha_{\Lambda}(I)$, $\beta_{\Lambda}(I)$
	- ! Compute the distance to the reference, between I and $R: D(I)$
	- \blacksquare Selection of a threshold λ :
		- \circ if D(I) ≥ λ, \Rightarrow anomaly

Selection of the best distance (Basseville 89)

⁴Quadratic distance on parameters

$$
D_{\alpha}(I) = \frac{1}{j} \sum_{j=1}^{J} (\alpha_{2j}(I) - \alpha_{2j}(R))^{2}
$$

$$
D_{\beta}(I) = \frac{1}{J} \sum_{j=1}^{J} (\beta_{2j}(I) - \beta_{2j}(R))^{2}
$$

◆Divergence of Kullback-Leibler; p1 and p2 are 2 p.d.f.

$$
DK(p_1, p_2) = \int (p_1(x) - p_2(x)(\ln p_1(x) - \ln p_2(x))dx
$$

giving a distance with one or two scales:

$$
K_{\Delta}^{(1D)}(I) = DK(p_{\Delta, I}, p_{\Delta, R})
$$

$$
K_{\Delta,\Delta'}^{(2D)}(I) = DK(p_{\Delta,\Delta',I}, p_{\Delta,\Delta',R})
$$

Ex. 1 : Denial of Service attack

Cnrs

LAAS
CNRS **Ex. 2: Multiplicative increase of traffic**

Ex. 3: Comparison between distances LAAS

CNRS

LAAS **CNRS Statistical performance: ROC curves**

- Cnrs
- ⁴ ROC curves: detection probability according to the fixed probability of false alarms

$$
\leftarrow P_{D} = f(P_{FA}) \text{ or } P_{D} = f(\lambda), P_{FA} = f(\lambda)
$$

Conclusion on anomalies/attacks detection

- $→$ Parameters of the $\Gamma_{\alpha,\beta}$ farima (φ, d, θ) model change differently depending on the type of anomaly
- ⁴ Kullback- Leibler distance allows a robust detection of attacks, even when they represent less than 1% of the traffic (and is not sensitive to an artificial increase of the amount of traffic)
- \rightarrow BUT: it is not possible to identify anomaly constituting packets / flows
- èThresholds are difficult (impossible) to set
- \rightarrow Classification of anomalies is limited

Unsupervised anomaly detection

LAAS **From supervised to unsupervised AD**

- □ Current Anomaly Detection (AD) approaches are based on an "acquired knowledge" perspective
	- \rightarrow signature based
	- \rightarrow Supervised approaches
- ^q But
	- . Network anomalies are a moving target
	- New attacks as well as new variants to already known attacks arise
	- **.** New services and applications are constantly emerging
- ^q And
	- . Defense is reactive, often hand made, slow, costly
	- Network and system remain unprotected for long periods

LAAS **From supervised to unsupervised AD**

- ^q Can we detect what we don't know in an evolving Internet ?
- □ Is current anomaly-detection perspective richenough to handle the problem ?
- □ Is it possible to manage the network security in a self aware basis to improve performance and reduce operation costs ?
- \rightarrow unsupervised learning is the idea
	- **For proactive security (e.g. 0d anomaly detection)**
	- . For autonomous defense system (cost reduction)

Q Approach based on Clustering

a Benefits

(+) no previous knowledge: neither labeled data nor traffic signatures

- (+) no need for traffic modeling or training (labeling traffic flows is difficult, time-consuming, and costly)
- (+) can detect unknown traffic anomalies
- (+) a major step towards self-aware monitoring

^q Challenges with clustering

- (-) lack of robustness: general clustering algorithms are sensitive to initialization, specification of number of clusters, etc.
- (-) difficult to cluster high-dimensional data: structure-masking by irrelevant features, sparse spaces ("the curve of dimensionality")
- (-) clustering is used only for outliers detection

Filtering rules for anomaly characterization

- ^q Automatically produce a set of filtering rules to correctly isolate and characterize detected anomalous flows
- □ Select the "best" features to construct a signature of the anomaly, combining the top-K filtering rules
- **n** In a nutshell, select those sub-spaces where anomalous traffic is isolated the best

- \Box Let Y = { y_1 , ..., y_n } be a set of *n* flows captured at the network of analysis
- ^q Each flow yi ∈ Y is described by a set of *m* traffic features: $x_i = (x_i(1), ..., x_i(m)) \in \Re^m$
- α X = { x_1 , .., x_n } is the complete matrix of features, referred to as the *feature space*

Retrieve natural groupings in X through clustering is challenging!!!

LAAS **How to improve clustering robustness?**

- ^q Idea: combine the information provided by multiple partitions of X to "filter noise", easing the discovery of natural groupings
- \Box How to produce multiple partitions? \rightarrow Sub-Space **Clustering**
- ^q Each sub-space Xi ⊂ X is obtained by projecting X in *k* out of the *m* original dimensions. Density-based clustering ($DBS\overline{C}AN$) at X_i

LAAS **Example of evaluation scenario CNRS (emulated on LaasNetExp or ILAB.t)**

detection of a SYN Distributed Denial of CHITS Service (DDoS) attack in MAWI traffic

Illustration of clustering graphical results (a) SYN DDoS (1/2) (b) SYN DDoS (2/2)

Generated signature

(nDsts == 1) Λ (nSYN/nPkts > λ_3) Λ (nPkts/sec > λ_4) Λ (nSrcs > λ_5)

Attacks detection & characterization in CNRS MAWI traffic

^q Detect network attacks that are not the biggest elephant flows

Comparison between ≠ unsupervised techniques

Comparison of detection performance of several detection algorithms

ROC (receiver Operating Characteristic) curves presenting True Positive Rate (TPR) vs. False positive rate (TPR)

- ^q Detection / classification reports of anomalies
- **Q** Reports are very complete in order to allow the automatic enforcement of countermeasures for the ML engine
- (+) filtering rules ready to be exported towards security devices (e.g. Intrusion Detection Systems, Intrusion Protection Systems, Firewal, etc.)

- **p** Botnets: main current threads on the Internet?
- □ Deep packet inspection / misuse detection
- **p** Profile based detection
- **a Traffic characterization, analysis and modeling**
- □ Supervised & unsupervised machine learning
- **p** Distances
- **Q** Clustering

 \Box +

\Box Supervised \rightarrow unsupervised

- . Reducing the need of labeled traffic is paramount to achieve useful anomaly detectors
- **.** Gives methods for network Autonomy
- . Reduces management cost, and duration (limited hand made human interventions)
- . Allows Oday (unknown) anomaly detection
- . Network does not stay unprotected for a long period

\rightarrow A way to adapt to botnet thread?

→ A global trend in networks / networking

That's all folks !