Symmetric Encryption

Vincent Migliore

vincent.migliroe@insa-toulouse.fr

INSA-TOULOUSE / LAAS-CNRS

K ロ > K @ > K 할 > K 할 > L 할 > O Q @

Summary of previous lesson

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ 『코』 ◇ Q ⊙

Caesar Cipher

 $Enc(k, m_i) = m_i + k$ [26] $Dec(k, c_i) = c_i - k$ [26] Vulnerable to frequency analysis.

(Blaise de) Vigenère Cipher

 $Enc(k_i, m_i) = m_i + k_i$ [26] $Dec(k_i, c_i) = c_i - k_i$ [26] Still vulnerable to frequency analysis when $|K| < |M|$

KOD KARD KED KE DA ARD KOR

(Auguste) Kerckhoffs principle

 \blacktriangleright The design of a system should not require secrecy, and compromise of the system should not inconvenience the correspondents.

Modern cryptography

- \blacktriangleright Major improvements in terms of mathematical background.
- Industrialization of calculators \implies security based on computational complexity.

KEL KALEY KEY E NAG

 \blacktriangleright Highly standardized (mostly by Americans): NIST, IETF, ISO.

KOD KARD KED KE DA ARD KOR

Symmetric Encryption

- **Privacy**
- No integrity (at this point).
- Authentication.
- No non-repudiation (both Alice and Bob can Encrypt).

Asymmetric Encryption

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Asymmetric Encryption

- **Privacy**
- \times No integrity (at this point).
- \times No authentication.
	- No non-repudiation.

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Asymmetric Encryption

- \times No privacy
- No integrity (at this point).
- Authentication.
- Non-repudiation.

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917) message \oplus key = cipher \oplus cipher \oplus key = message message : 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 clé : 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 === chiffr´e : 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1

Highly secure

Uniform output + for a given ciphertext, any plaintext is possible.

KOD KARD KED KED BE YOUR

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917) message \oplus key = cipher \oplus cipher \oplus key = message message : 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 $clé : 1 1 0 0 0 1 0 1 0 0 0 1 1 1$ === chiffr´e : 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1

But limited

- **►** Shannon: $|K| \ge |M|$ \implies unpracticable (+ key must not be used twice)
- \triangleright Maleable: Any partial knowledge on the plaintext leads to devastating attack.

KORK ERKER ADAM ADA

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917)

message \oplus key = cipher \oplus cipher \oplus key = message message : 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 clé : 1 1 0 0 0 1 0 1 0 0 0 1 1 1 === chiffré: 100110110001111

Remark

OTP can be viewed as a Vigenère cipher with 1-bit symbols with key as long as the message.

KOD KARD KED KED BE YOUR

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917)

message \oplus key = cipher \oplus cipher \oplus key = message message : 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 clé : 1 1 0 0 0 1 0 1 0 0 0 1 1 1

=== chiffr´e : 1 0 0 1 1 0 1 1 0 0 0 1 1 1 1

Remark [2]

In one specific case, OTP may be practical:

- \triangleright We generate offline an incredible amount of random bits.
- \triangleright We physically store these bits into at least 2 mass storages.
- \triangleright We distribute to some recipients a mass storage.
- \triangleright Afterword, OTP communication can be started using random bits previously generated.**KORK ERKER ADAM ADA**

Practical symmetric encryption

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ 『코』 ◇ Q ⊙

Symmetric encryption - beyond OTP

KOD KARD KED KED BE YOUR

Limitations of OTP

- \triangleright Key length equals to message length;
- \blacktriangleright maleable;
- \blacktriangleright Cannot use key twice.

Symmetric encryption - beyond OTP

Desirable property and consequences

- \triangleright We would like to use a bounded key for large messages;
- \triangleright At some point, we must reduce security on perfect secrecy to allow such property;
- \triangleright Now, we consider that attacker may break cryptosystem, but we want that such attack demands unpractical power.

KOD KARD KED KED BE YOUR

Symmetric encryption - Block cipher

Definition of a block cipher

- \blacktriangleright Message is split into blocks of size *n*;
- \blacktriangleright Key is selected as random string of size k ;
- \blacktriangleright Each block of message is encrypted with the key and produces ciphertext of size *n*;
- \triangleright decryption is the invert operation of encryption, using the same key and the same blocksize.

Symmetric encryption - Block cipher

Construction of a block cipher

- \triangleright Assumption: Block ciphers are secured if they can be modeled as pseudo-random permutations (PRPs).
- ► Formally: an *n*-bit blockcipher under a randomly-chosen key is computationally indistinguishable from a randomly-chosen *n*-bit permutation.
- \triangleright Challenge: Find a computationally efficient algorithm that meet the assumption.

KORK ERKER ADAM ADA

Symmetric encryption - Block cipher

Practical block cipher - Shannon properties (1949)

Two main properties for block ciphers:

- \triangleright Diffusion: If 1 bit of plaintext is changed, statistically half of output bits must be changed (avalanch effect).
- \triangleright Confusion: 1 bit of ciphertext must be linked with several bits of the key.

KOD KARD KED KED BE YOUR

Question: Does it apply to OTP?

SP-Network

Construction

- \triangleright SP-network is a succession of Substitution/permutation functions parametrized with a key.
- \triangleright Substitution/permutation functions must be invertible.
- \triangleright Each iteration of Substitution/permutation function is called a round.
- \triangleright The more rounds implemented, the more outputs looks uniform and independant from message/key (if properly implemented).
- \triangleright Security: finding information about plaintext must be as hard as an exhaustive search on the key \implies security level \approx 2^{key length}.

KORK ERKER ADAM ADA

SP-Network

Design considerations

Two main approaches exist:

- \triangleright Making Substitution/permutation pseudo-random with a unique key:
	- \blacktriangleright Requires the implementation of many Substitution/permutation functions.
- \triangleright Making Key pseudo-random with a fixed Substitution/permutation function:
	- \blacktriangleright Requires the generation of many keys, as many as the number of rounds.

KOD KARD KED KED BE YOUR

SP-Network

KOD KARD KED KED BE YOUR

Most practical approach

- \triangleright Second choice: Key is pseudo-random with a fixed Substitution/permutation.
- \blacktriangleright Round keys are generated with a Key Derivation function.

Definitions

Let:

- \triangleright *n* be the length in bits of a block.
- \triangleright *k* be the length in bits of the key.

Construction

A SP-Network is constructed with the execution of a given number *N* of rounds. A round consists in 1 round key addition, 1 Substitution and 1 Permutation. Each function is invertible to provide symmetric encryption.

$Substitution \rightarrow S-ROX$

Substitutes 1 symbol to another. It contributes to confusion because it makes output non-intelligible. It also contributes to non-linearity, i.e.: $S-BOX(v_1 \oplus v_2) \neq S-BOX(v_1) \oplus S-BOX(v_2).$

Permutation \rightarrow P-BOX

Switch symbols. It contributes to diffusion because it dispatches bits all over the internal state. By construction, it is linear, i.e.: $P\text{-}BOX(v_1 \oplus v_2) = P\text{-}BOX(v_1) \oplus P\text{-}BOX(v_2).$

Important note

S-BOX and P-BOX are basically permutations, that is why sometimes we prefer define S-BOX and D-BOX (*Diffusion*-BOX), where both are permutations but first one is non-linear.

イロトメ 御 トメ 君 トメ 君 トッ 君

 2990

KD

 \blacktriangleright Key derivation function. For *N* rounds and a *k*-bit key, generates $(N + 1)$ *n*-bit subkeys.

K ロ ト K 何 ト K ヨ ト K ヨ ト

÷.

 2990

 \blacktriangleright Like OTP, make input uniform before each round.

Why non-linearity so important? Application

We note (X_1, X_2) two messages and (Y_1, Y_2) associated ciphertexts encrypted with same key.

We consider a P-Network (i.e. SP-Network without S-BOX), and $N = 2$ rounds. Evaluates $(\Delta Y = Y_1 \oplus Y_2)$

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 2990

Why non-linearity so important? Application

We note (X_1, X_2) two messages and (Y_1, Y_2) associated ciphertexts encrypted with same key.

We consider a P-Network (i.e. SP-Network without S-BOX), and $N = 2$ rounds. Evaluates $(\Delta Y = Y_1 \oplus Y_2)$

Answer

Due to linearity, $\Delta Y =$ P-BOX(P-BOX($X_1 \oplus X_2$)) independent from the key \implies differential attack.

Why non-linearity so important? Application

We note (X_1, X_2) two messages and (Y_1, Y_2) associated ciphertexts encrypted with same key.

We consider a P-Network (i.e. SP-Network without S-BOX), and $N = 2$ rounds. Evaluates $(\Delta Y = Y_1 \oplus Y_2)$

Note

More advanced attack tries to find some linearity inside S-BOX, in order to partially remove key bits. It is so called linear cryptanalysis.

Symmetric encryption - case of AES (Rijndael - 2000)

History

- Designed by Joan Daemen et Vincent Rijmen (Belgium).
- \triangleright Winner in 2000 of the NIST "AES" competition.
- Based on SP-NETWORK.
- Interesting construction: Both security AND implementation have been studied during design process.

Description of 1 round of AES:

Structure

Internal state is composed of a 4x4 matrix of bytes. 4 operations are executed over internal state each round:

- 1. AddRoundKey
- 2. SubBytes (S-BOX)
- 3. ShiftRows (D-BOX)
- 4. MixColumns (D-BOX)

KORK ERKER ADAM ADA

1 - AddRoundKey

- \triangleright xor between state and round-key.
- \triangleright if message independant from key, and key uniform, then the new state looks uniform.

KOD KARD KED KE DA ARD KOR

2 - SubBytes

- \triangleright Non-linearity: Minimization of input-output correlation.
- Complexity: Complex expression in $GF(2^8)$.
- \triangleright Simple implementation: Look-up table (and must be since litteral expression complex).

KORKARA KERKER DAGA
Symmetric encryption - Round of AES

KORK STRAIN A STRAIN A STRAIN

3 - ShiftRows

- \triangleright Variable byte rotation of each line depending on line index.
- \blacktriangleright First line: no rotation.
- \blacktriangleright Second row: 1 byte rotation.
- \blacktriangleright Third row: 2 bytes rotation.
- \blacktriangleright Fourth row: 3 bytes rotation.

Symmetric encryption - Round of AES

4 - MixColumns

Column per column scrambling of coefficients. Equivalent to multiplying each column by following matrix:

$$
\begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix}
$$

Symmetric encryption - Round of AES

High level consideration

MixColumns of last round is skipped to make Encryption/decryption symmetric, i.e.:

- **►** Encryption: $\oplus \rightarrow S$ -BOX \rightarrow D-BOX $\rightarrow \cdots \rightarrow \oplus \rightarrow S$ -BOX $\rightarrow \oplus$
- **►** Decryption: $\oplus \rightarrow S$ -BOX \rightarrow D-BOX $\rightarrow \cdots \rightarrow \oplus \rightarrow S$ -BOX $\rightarrow \oplus$

Symmetric encryption - case of AES (Rijndael - 2000)

KOD KARD KED KED BE YOUR

Security

- \triangleright AES is considered as a good PRP if implemented properly.
- \triangleright Security depends on the number of rounds executed:

Symmetric encryption - case of AES (Rijndael - 2000)

Security

- \triangleright Best known attack: biclique attack on full AES-128 reducing security by 2 bits (i.e. 4 times faster than exhaustive search).
- \triangleright Variant of Meet-In-The-Middle (MITM) attack (Diffie and Hellman 1977)

イロト イ押 トイヨ トイヨ トーヨー

 $2Q$

Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). I can encrypt:

KEL KALEY KEY E NAG

- \blacktriangleright 16 bytes of data.
- \blacktriangleright 12x16 bytes of data.
- \blacktriangleright No limitation.

Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). I can encrypt:

KEL KALEY KEY E NAG

- \blacktriangleright 16 bytes of data.
- \blacktriangleright 12x16 bytes of data.
- \blacktriangleright No limitation.

Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). Compared to OTP:

KORK STRAIN A STRAIN A STRAIN

- \blacktriangleright I have a smaller secret key.
- \blacktriangleright I have a larger secret key.
- \blacktriangleright I have a comparable key length.

Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). Compared to OTP:

KORK STRAIN A STRAIN A STRAIN

- \blacktriangleright I have a smaller secret key.
- \blacktriangleright I have a larger secret key.
- \blacktriangleright I have a comparable key length.

Encryption of larger messages - Mode of operation

Electronic Code Book (ECB)

Construction

The message is split into blocks matching the size of Block-Cipher's block length. Each block is encrypted with the same key. Pros:

- \blacktriangleright Simplest construction.
- \triangleright Destination can decrypt a specific block without extra computations.
- \blacktriangleright Vulnerabilities?

How to evaluate security?

Security property: Semantic security

Without information about the key, ciphertext does not leak information about the message.

Adversary capability

Adversary capabilities are defined as indistinguishability games:

- ▶ IND-KPA (known plaintext-attack): adversary sees pairs (*m_i*, *Enc*(*m_i*)).
- \triangleright IND-CPA (chosen plaintext-attack): adversary SELECTS messages m_i and ASKS an entity to encrypt *mⁱ* .

KORK EXTERNED ARA

 \triangleright IND-CCA: More information during asymmetric encryption lesson.

IND-CPA game

Win condition

- Adversary wins the game if: $Pr[b = b'] > 1/2$.
- If $Pr[b = b'] = 1/2$, then adversary can only guess randomly which message has been encrypted.

$$
\blacktriangleright \text{ Advantage: } \mathcal{A}_{\text{CPA}} = |\Pr[b = b'] - 1/2| = \epsilon
$$

IND-CPA game

Notion of negligible advantage

- \blacktriangleright For key length k ;
- ► For Advantage $A_{\text{CPA}} = |\text{Pr}[b = b'] 1/2| = \epsilon(k);$
- \blacktriangleright Adversary has negligible advantage if $e(k) < \frac{1}{2^k}$ for all *k* after given k_0 .

KEL KALEY KEY E NAG

IND-CPA game

Question

If I have an algorithm that provides a very small (say 1/10000) advantage, does this lead to a real distinguability?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

First try - I run my algorithm twice and I make a vote

Success probability

 P_s = probability of success, P_f = probability of a fail.

Algorithm

If algorithm output the same value twice, I select this value. If values are different, I flip a coin to select one.

By doing so, I can double my success rate. True?

First try - I run my algorithm twice and I make a vote

Success probability $P_s = 0.5 + \epsilon$, $P_f = 0.5 - \epsilon$.

$$
P_{success} = P_s^2 + 0.5 \times P_s P_e + 0.5 \times P_e P_s = (0.5 + \epsilon)^2 + (0.5 + \epsilon)(0.5 - \epsilon) = 0.5 + \epsilon \text{ (fail...)}
$$

KEL KALEY KEY E NAG

Second try - I run my algorithm three times and I make a vote

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 2990

Success probability

Better advantage this time?

Second try - I run my algorithm three times and I make a vote

Success probability $P_s = 0.5 + \epsilon$, $P_f = 0.5 - \epsilon$.

$$
P_{\text{success}} = P_s^3 + 3 \times P_s^2 P_e = P_s^2 \times (P_s + 3P_e)
$$

= $(0.5 + \epsilon)^2 \times (0.5 + \epsilon + 1.5 - 3\epsilon)$
= $(0.5 + 2\epsilon + 2\epsilon^2) \times (1 - \epsilon)$
= $0.5 + 1.5\epsilon - 2\epsilon^3$ (out...)

K ロ ト K 何 ト K ヨ ト K ヨ ト … 2990 B

I run my algorithm *N* times and I make a vote

Success probability $P_s = 0.5 + \epsilon$, $P_f = 0.5 - \epsilon$.

$$
P_{\text{success}} = \sum_{i=0}^{N/2} {N \choose i} P_s^{N-i} P_e^i = P_s^N \times \sum_{i=0}^{N/2} {N \choose i} \left(\frac{P_e}{P_s}\right)^i > P_s^N
$$

$$
P_{\text{success}} > (0.5 + \epsilon)^N \sim 0.5 + N\epsilon
$$

Conclusion: If I run my algorithm $1/(\epsilon)$, I can distinghuish with probability close to 1.

イロト イ押 トイヨ トイヨ トーヨー

 2990

Go back to ECB mode of operation

How to win the game?

Which *mⁱ* and *m^j* adversary can select to win?

Go back to ECB mode of operation

How to win the game?

- \blacktriangleright $m_i =$ [Hello][World]
- \blacktriangleright m_i = [Hello][Hello]
- \triangleright Enc(*m_i*) = [*c*₀][*c*₁],Enc(*m_i*) = [*c*₀][*c*₀]

If encrypted block $0 =$ encrypted block 1,return *j* else *i*.

Go back to ECB mode of operation

Conclusion

 $A_{CPA} = 1/2$, i.e. adversary always wins! \implies ECB mode is trivially insecure under IND-CPA game and should not be used in practice.

KEL KALEY KEY E NAG

Cipher Block Chaining (CBC)

Construction

- \blacktriangleright Also called nonce-based encryption;
- Initialization Vector (IV = nonce) is XORed with input massage block, and chained with next input massage block;

KEL KALEY KEY E NAG

 \blacktriangleright How I select a secure nonce?

Under free nonce, how to win the game?

Which *mⁱ* and *m^j* adversary can select to win?

Under free nonce, how to win the game?

Adversary ask for encryption of two plaintexts differents, say:

 \blacktriangleright *m_i* = [Hello], *m_i* = [World]

 \blacktriangleright Enc $(m_i) = [c_i],$ Enc $(m_j) = [c_j]$ then choose [Hello] and [World] as challenges.K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Conclusion Which nonce may I choose?

Case 1 - random, secret but repeated nonce

Nonce is selected at random at the start of communication and kept secret from adversary. Secure?

Case 1 - random, secret but repeated nonce

Still not CPA secure since adversary can select *mⁱ* and *m^j* before challenge and requests $c_i = \text{Enc}(m_i)$ and $c_i = \text{Enc}(m_i)$.

Case 1 - Conclusion Nonce should not be used twice.

Case 2 - randomized, public but predictible

- \blacktriangleright Nonce is firstly selected at random.
- \blacktriangleright For next message, we just continue the chaining, i.e. last cipher block is taken as the new nonce. Secure? (case of TLSv1.0).

KOD CONTRACT A BOAR KOD A CO

Case 2 - randomized, public but predictible

Select m_i such as $m_i = IV_{n-1} =$ last encrypted block

 \implies first block is the encryption of 0 under a free nonce.

 \implies deterministic.

Case 2 - Conclusion Nonce must not be predictible by adversary.

Case 3 - Random and unpredictible Secure?

Case 3 - Random and unpredictible

Secure, but be carefull, you must send secretly to your corresponding the nounce used for next encryption and ensure integrity.

And what about the key? How often I must renew it?

CBC - theorem

For any length $L > 0$:

If PRP *E* is semantically secure over (*K*,*X*), then *E* used in CBC mode (E_{CBC}) is semantically secure under CPA over (K, X^L, X^{L+1}) . For adversary making *q*-query, then:

$$
\mathcal{A}(E_{CBC}) \leq 2\mathcal{A}(E) + q^2L^2/|X|
$$

Where |*X*| is the number of outputs possible for the permutation and *L* the maximum number of blocks per message.**KOD CONTRACT A BOAR KOD A CO**

Case of AES

- \triangleright size of AES output: 128 bits;
- ► Target advantage: 2^{-80} .

Upper bound of encrypted blocks?

Case of AES

- ► size of AES output = 128 bits \implies $|X| = 2^{128}$;
- **►** Target advantage = 2^{-80} \implies $q^2L^2/|X| = 2^{-80}$;
- \blacktriangleright *q*L = $2^{-80+128} = 2^{24}$ encrypted blocks.

Conclusion: We must renew the key before reaching 2²⁸ bytes of encrypted data, i.e. 256 MB.

KEL KALEY KEY E NAG
Numerical application

Case of AES

- \triangleright size of AES output: 128 bits;
- ► Target advantage: 2^{-80} .

Upper bound of encrypted blocks?

Case of AES

- ► size of AES output = 128 bits \implies $|X| = 2^{128}$;
- ^I Target advantage = 2[−]⁸⁰ =⇒ *q* 2*L* ²/|*X*| = 2 [−]⁸⁰;

$$
qL = \sqrt{2^{-80+128}} = 2^{24}
$$
 encrypted blocks.

Conclusion: We must renew the key before reaching 2²⁸ bytes of encrypted data, i.e. 256 MB.

KORKARA KERKER DAGA

How to ensure integrity?

