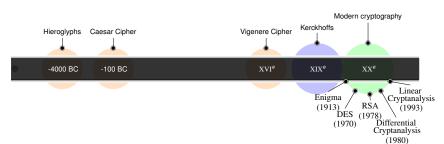
Symmetric Encryption

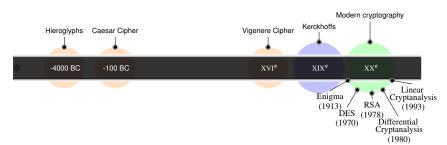
Vincent Migliore

 ${\tt vincent.migliroe@insa-toulouse.fr}$

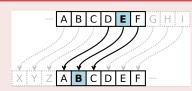
INSA-TOULOUSE / LAAS-CNRS

Summary of previous lesson

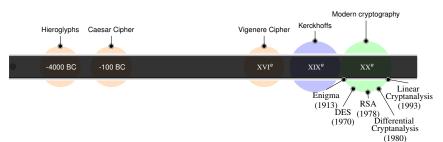




Caesar Cipher

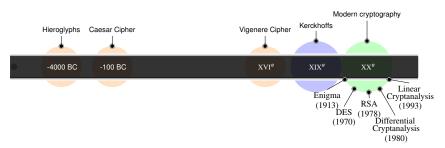


Enc (k, m_i) = $m_i + k$ [26] Dec (k, c_i) = $c_i - k$ [26] Vulnerable to frequency analysis.



(Blaise de) Vigenère Cipher

Enc
$$(k_i, m_i)$$
 = $m_i + k_i$ [26]
Dec (k_i, c_i) = $c_i - k_i$ [26]
Still vulnerable to frequency
analysis when $|K| < |M|$



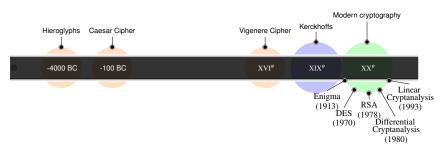
(Auguste) Kerckhoffs principle

Military cryptographier. Provided several principles that influenced modern cryptography:

• The system should be, if not theoretically unbreakable, unbreakable in practice.

Cryptographie

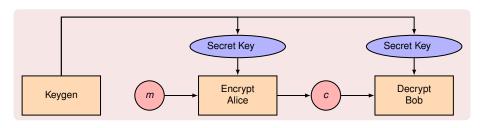
 The design of a system should not require secrecy, and compromise of the system should not break security.



Modern cryptography

- Major improvements in terms of mathematical background.
- Industrialization of calculators

 security based on computational complexity.
- Highly standardized (mostly by Americans): NIST, IETF, ISO.



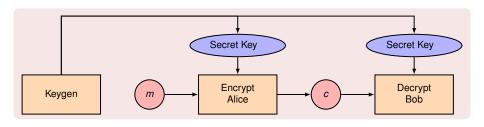
Symmetric Encryption

Privacy

Integrity

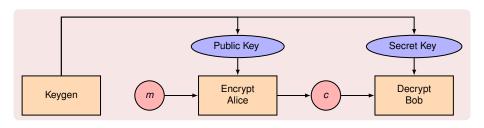
Authentication

Non-repudiation



Symmetric Encryption

- Privacy
- Integrity
- Authentication
- Non-repudiation (both Alice and Bob can Encrypt)



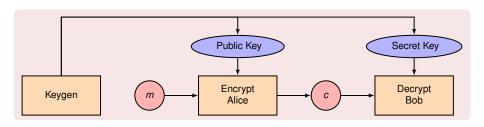
Asymmetric Encryption

Privacy

Integrity

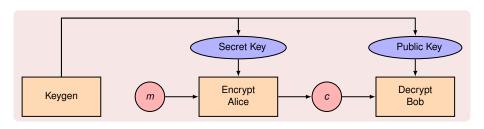
Authentication

Non-repudiation



Asymmetric Encryption

- Privacy
- Integrity
- X Authentication
- Non-repudiation



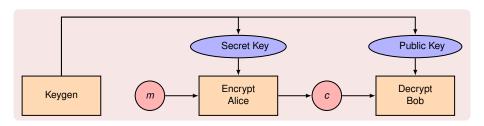
Signature

Privacy

Integrity

Authentication

Non-repudiation



Signature

- Privacy
- Integrity
- Authentication
- Non-repudiation

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917)

Highly secure

Uniform output + for a given ciphertext, any plaintext is possible.

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917)

But limited

- Shannon: $|K| \ge |M| \implies$ unpracticable (+ key must not be used twice)
- Maleable: Any partial knowledge on the plaintext leads to devastating attack.

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917)

Remark

OTP can be viewed as a Vigenère cipher with 1-bit symbols with key as long as the message.

Perfect secrecy definition

Perfect Secrecy (or information-theoretic secure) means that the ciphertext conveys no information about the content of the plaintext.

One Time Pad (Vernam, 1917)

Remark [2]

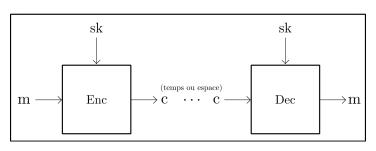
In one specific case, OTP may be practical:

- We generate offline an incredible amount of random bits.
- We physically store these bits into at least 2 mass storages.
- We distribute to some recipients a mass storage.
- Afterword OTP communication can be started using random bits

Vincent Migliore Cryptographie

Practical symmetric encryption

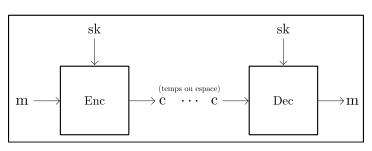
Symmetric encryption - beyond OTP



Limitations of OTP

- Key length equals to message length;
- maleable;
- Cannot use key twice.

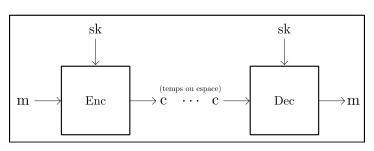
Symmetric encryption - beyond OTP



Desirable property and consequences

- We would like to use a bounded key for large messages;
- At some point, we must reduce security on perfect secrecy to allow such property;
- Now, we consider that attacker may break cryptosystem, but we want that such attack demands unpractical power.

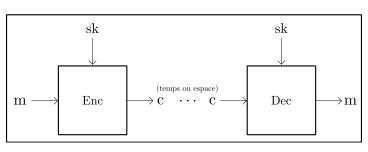
Symmetric encryption - Block cipher



Definition of a block cipher

- Message is split into blocks of size n;
- Key is selected as random string of size k;
- Each block of message is encrypted with the key and produces ciphertext of size n;
- decryption is the invert operation of encryption, using the same key and the same blocksize.

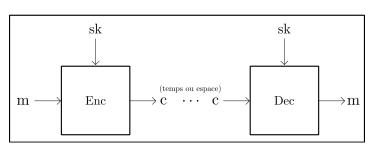
Symmetric encryption - Block cipher



Construction of a block cipher

- Assumption: Block ciphers are secured if they can be modeled as pseudo-random permutations (PRPs).
- Formally: an n-bit blockcipher under a randomly-chosen key is computationally indistinguishable from a randomly-chosen n-bit permutation.
- Challenge: Find a computationally efficient algorithm that meet the assumption.

Symmetric encryption - Block cipher



Practical block cipher - Shannon properties (1949)

Two main properties for block ciphers:

- Diffusion: If 1 bit of plaintext is changed, statistically half of output bits must be changed (avalanch effect).
- Confusion: 1 bit of ciphertext must be linked with several bits of the key.

Question: Does it apply to OTP?

SP-Network

Construction

- SP-network is a succession of Substitution/permutation functions parametrized with a key.
- Substitution/permutation functions must be invertible.
- Each iteration of Substitution/permutation function is called a round.
- The more rounds implemented, the more outputs looks uniform and independant from message/key (if properly implemented).
- Security: finding information about plaintext must be as hard as an exhaustive search on the key ⇒ security level ≈ 2^{key length}.

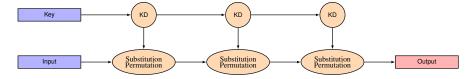
SP-Network

Design considerations

Two main approaches exist:

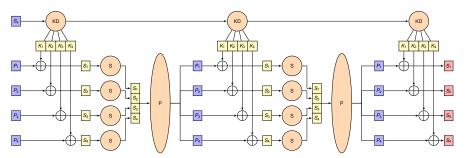
- Making Substitution/permutation pseudo-random with a unique key:
 - Requires the implementation of many Substitution/permutation functions.
- Making Key pseudo-random with a fixed Substitution/permutation function:
 - Requires the generation of many keys, as many as the number of rounds.

SP-Network



Most practical approach

- Second choice: Key is pseudo-random with a fixed Substitution/permutation.
- Round keys are generated with a Key Derivation function.



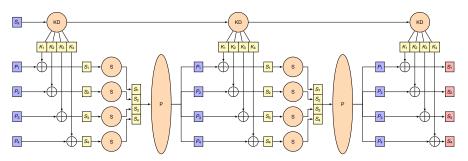
Definitions

Let:

- n be the length in bits of a block.
- k be the length in bits of the key.

Construction

A SP-Network is constructed with the execution of a given number N of rounds. A round consists in 1 round key addition, 1 Substitution and 1 Permutation. Each function is invertible to provide symmetric encryption.



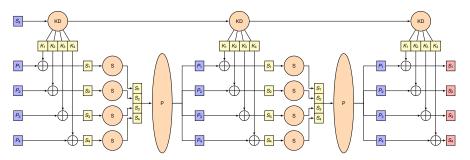
Substitution → S-BOX

Substitutes 1 symbol to another. It contributes to confusion because it makes output non-intelligible. It also contributes to non-linearity, i.e.: S-BOX($v_1 \oplus v_2$) \neq S-BOX($v_1 \oplus v_2$).

Permutation → P-BOX

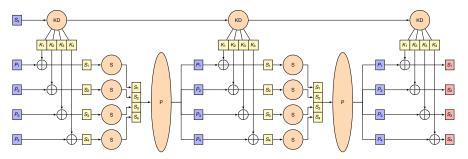
Switch symbols. It contributes to diffusion because it dispatches bits all over the internal state. By construction, it is linear, i.e.:

$$P\text{-BOX}(v_1 \oplus v_2) = P\text{-BOX}(v_1) \oplus P\text{-BOX}(v_2).$$



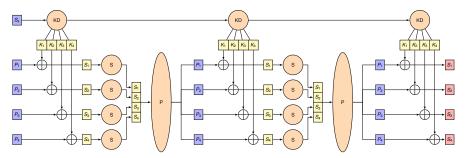
Important note

S-BOX and P-BOX are basically permutations, that is why sometimes we prefer define S-BOX and D-BOX (*Diffusion*-BOX), where both are permutations but first one is non-linear.



KD

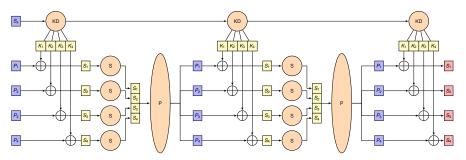
- Key derivation function. For N rounds and a k-bit key, generates (N+1) n-bit subkeys.
- Like OTP, make input uniform before each round.



Why non-linearity so important? Application

We note (X_1, X_2) two messages and (Y_1, Y_2) associated ciphertexts encrypted with same key.

We consider a P-Network (i.e. SP-Network without S-BOX), and N=2 rounds. Evaluates ($\Delta Y=Y_1\oplus Y_2$)



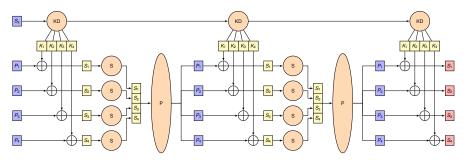
Why non-linearity so important? Application

We note (X_1, X_2) two messages and (Y_1, Y_2) associated ciphertexts encrypted with same key.

We consider a P-Network (i.e. SP-Network without S-BOX), and N=2 rounds. Evaluates ($\Delta Y = Y_1 \oplus Y_2$)

Answer

Due to linearity, $\Delta Y = P\text{-BOX}(P\text{-BOX}(X_1 \oplus X_2))$ independent from the key \implies differential attack.



Why non-linearity so important? Application

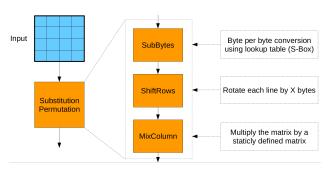
We note (X_1, X_2) two messages and (Y_1, Y_2) associated ciphertexts encrypted with same key.

We consider a P-Network (i.e. SP-Network without S-BOX), and N=2 rounds. Evaluates ($\Delta Y=Y_1\oplus Y_2$)

Note

More advanced attack tries to find some linearity inside S-BOX, in order to partially remove key bits. It is so called linear cryptanalysis.

Symmetric encryption - case of AES (Rijndael



History

- Designed by Joan Daemen et Vincent Rijmen (Belgium).
- Winner in 2000 of the NIST "AES" competition.
- Based on SP-NETWORK.
- Interesting construction: Both security AND implementation have been studied during design process.

Symmetric encryption - Round of AES

Description of 1 round of AES: K₃ SubBytes a12 a₁₆ ShiftRows a₁₆ a_3 a_4 a_3 a_4 MixColumns a12

Symmetric encryption - Round of AES

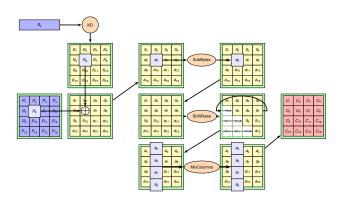


Structure

Internal state is composed of a 4x4 matrix of bytes. 4 operations are executed over internal state each round:

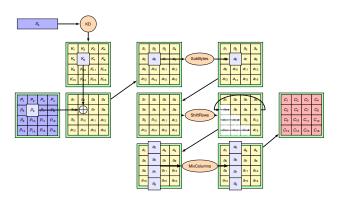
- AddRoundKey
- 2. SubBytes (S-BOX)

- ShiftRows (D-BOX)
- MixColumns (D-BOX)



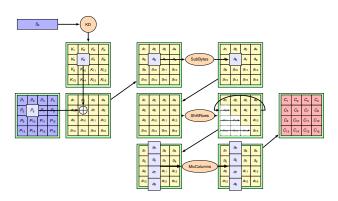
1 - AddRoundKey

- xor between state and round-key.
- if message independant from key, and key uniform, then the new state looks uniform.



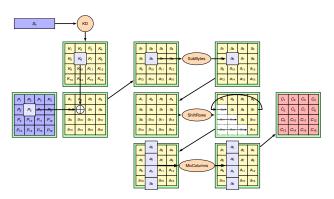
2 - SubBytes

- Non-linearity: Minimization of input-output correlation.
- Complexity: Complex expression in GF(2⁸).
- Simple implementation: Look-up table (and must be since litteral expression complex).



3 - ShiftRows

- Variable byte rotation of each line depending on line index.
- First line: no rotation.
- Second row: 1 byte rotation.
- Third row: 2 bytes rotation.
- Fourth row: 3 bytes rotation.

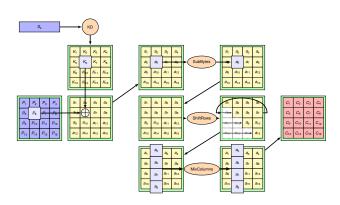


4 - MixColumns

Column per column scrambling of coefficients. Equivalent to multiplying each column by following matrix:

$$\begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \end{pmatrix}$$

Vincent Migliore

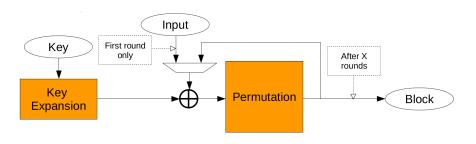


High level consideration

MixColumns of last round is skipped to make Encryption/decryption symmetric, i.e.:

- Encryption: $\oplus \rightarrow S\text{-BOX} \rightarrow D\text{-BOX} \rightarrow \cdots \rightarrow \oplus \rightarrow S\text{-BOX} \rightarrow \oplus$
- Decryption: $\oplus \to S\text{-BOX} \to D\text{-BOX} \to \cdots \to \oplus \to S\text{-BOX} \to \oplus$

Symmetric encryption - case of AES (Rijndael

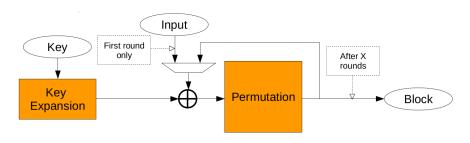


Security

- AES is considered as a good PRP if implemented properly.
- Security depends on the number of rounds executed:

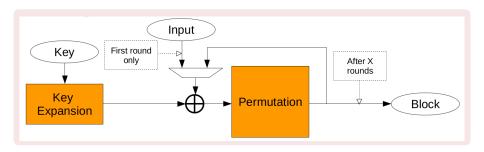
Name	Key length (bits)	Security	rounds
AES-128	128	128	10
AES-196	196	192	12
AES-256	256	256	14

Symmetric encryption - case of AES (Rijndael



Security

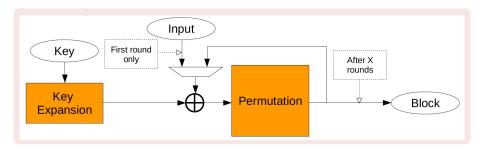
- Best known attack: biclique attack on full AES-128 reducing security by 2 bits (i.e. 4 times faster than exhaustive search).
- Variant of Meet-In-The-Middle (MITM) attack (Diffie and Hellman 1977)



Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). I can encrypt:

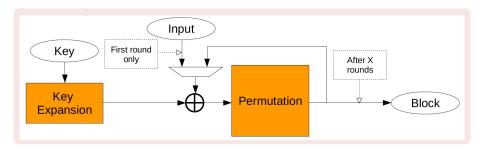
- 16 bytes of data.
- 12x16 bytes of data.
- No limitation.



Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). I can encrypt:

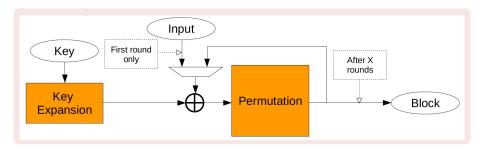
- 16 bytes of data.
- 12x16 bytes of data.
- No limitation.



Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). Compared to OTP:

- I have a smaller secret key.
- I have a larger secret key.
- I have a comparable key length.



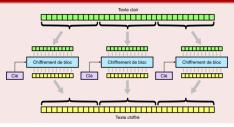
Question

We consider AES-256 (i.e. blocks of 4x4 bytes, 12 rounds). Compared to OTP:

- I have a smaller secret key.
- I have a larger secret key.
- I have a comparable key length.

Encryption of larger messages - Mode of opera

Electronic Code Book (ECB)



Construction

The message is split into blocks matching the size of Block-Cipher's block length. Each block is encrypted with the same key. Pros:

- Simplest construction.
- Destination can decrypt a specific block without extra computations.
- Vulnerabilities?

How to evaluate security?

Security property: Semantic security

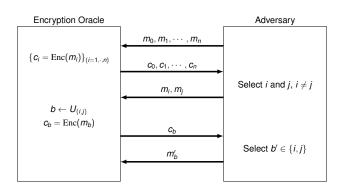
Without information about the key, ciphertext does not leak information about the message.

Adversary capability

Adversary capabilities are defined as indistinguishability games:

- IND-KPA (known plaintext-attack): adversary sees pairs $(m_i, Enc(m_i))$.
- IND-CPA (chosen plaintext-attack): adversary SELECTS messages m_i and ASKS an entity to encrypt m_i.
- IND-CCA: More information during asymmetric encryption lesson.

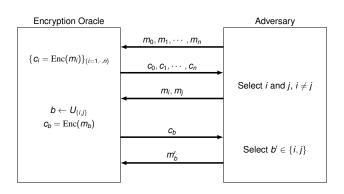
IND-CPA game



Win condition

- Adversary wins the game if: Pr[b = b'] > 1/2.
- If Pr[b = b'] = 1/2, then adversary can only guess randomly which message has been encrypted.
- Advantage: $A_{CPA} = |\Pr[b = b'] 1/2| = \epsilon$

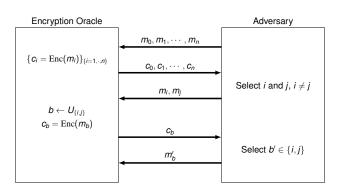
IND-CPA game



Notion of negligible advantage

- For key length k;
- For Advantage $A_{CPA} = |\Pr[b = b'] 1/2| = \epsilon(k);$
- Adversary has negligible advantage if $e(k) < \frac{1}{2^k}$ for all k after given k_0 .

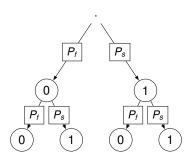
IND-CPA game



Question

If I have an algorithm that provides a very small (say 1/10000) advantage, does this lead to a real distinguability?

First try - I run my algorithm twice and I make a



Success probability

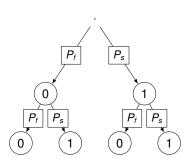
 P_s = probability of success, P_f = probability of a fail.

Algorithm

If algorithm output the same value twice, I select this value. If values are different, I flip a coin to select one.

By doing so, I can double my success rate. True?

First try - I run my algorithm twice and I make a



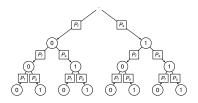
Success probability

$$P_s = 0.5 + \epsilon$$
, $P_f = 0.5 - \epsilon$.

$$P_{success} = P_s^2 + 0.5 \times P_s P_e + 0.5 \times P_e P_s = (0.5 + \epsilon)^2 + (0.5 + \epsilon)(0.5 - \epsilon)$$

= 0.5 + \epsilon (fail...)

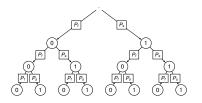
Second try - I run my algorithm three times and a vote



Success probability

Better advantage this time?

Second try - I run my algorithm three times and a vote

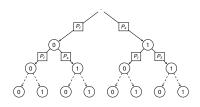


Success probability

$$P_s = 0.5 + \epsilon$$
, $P_f = 0.5 - \epsilon$.

$$\begin{split} P_{success} &= P_s^3 + 3 \times P_s^2 P_e = P_s^2 \times (P_s + 3P_e) \\ &= (0.5 + \epsilon)^2 \times (0.5 + \epsilon + 1.5 - 3\epsilon) \\ &= (0.5 + 2\epsilon + 2\epsilon^2) \times (1 - \epsilon) \\ &= 0.5 + 1.5\epsilon - 2\epsilon^3 \text{ (ouf...)} \end{split}$$

I run my algorithm N times and I make a vote



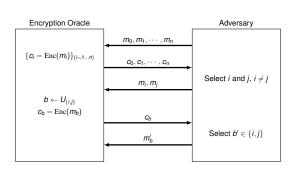
Success probability

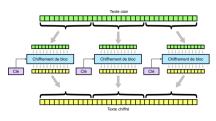
$$P_s = 0.5 + \epsilon$$
, $P_f = 0.5 - \epsilon$.

$$\begin{split} P_{\textit{success}} &= \sum_{i=0}^{N/2} \binom{N}{i} P_s^{N-i} P_e^i = P_s^N \times \sum_{i=0}^{N/2} \binom{N}{i} \left(\frac{P_e}{P_s}\right)^i > P_s^N \\ P_{\textit{success}} &> (0.5 + \epsilon)^N \sim 0.5 + N\epsilon \end{split}$$

Conclusion: If I run my algorithm $1/(\epsilon)$, I can distinguish with probability close to 1.

Go back to ECB mode of operation

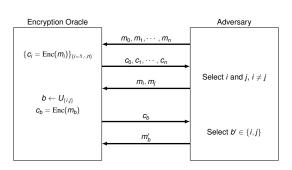


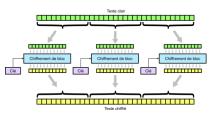


How to win the game?

Which m_i and m_j adversary can select to win?

Go back to ECB mode of operation



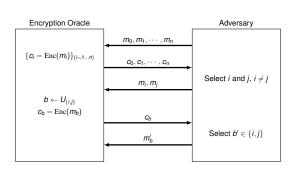


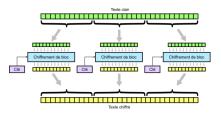
How to win the game?

- $m_i = [Hello][World]$
- $m_j = [\text{Hello}][\text{Hello}]$
- $\operatorname{Enc}(m_i) = [c_0][c_1], \operatorname{Enc}(m_j) = [c_0][c_0]$

If encrypted block 0 = encrypted block 1, return i else i.

Go back to ECB mode of operation



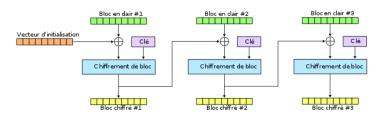


Conclusion

Cryptographie

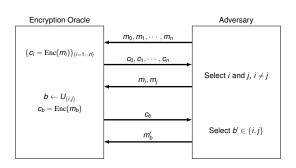
 $\mathcal{A}_{\textit{CPA}} = 1/2$, i.e. adversary always wins! \Longrightarrow ECB mode is trivially insecure under IND-CPA game and should not be used in practice.

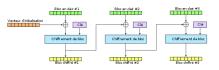
Cipher Block Chaining (CBC)



Construction

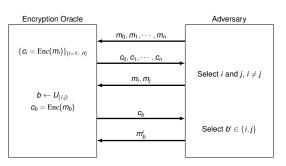
- Also called nonce-based encryption;
- Initialization Vector (IV = nonce) is XORed with input massage block, and chained with next input massage block;
- How I select a secure nonce?

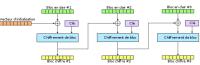




Under free nonce, how to win the game?

Which m_i and m_j adversary can select to win?



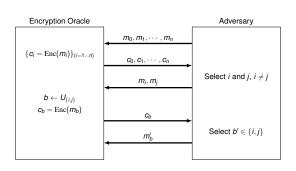


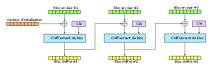
Under free nonce, how to win the game?

Adversary ask for encryption of two plaintexts differents, say:

- $m_i = [\text{Hello }], m_j = [\text{World }]$
- $\operatorname{Enc}(m_i) = [c_i], \operatorname{Enc}(m_j) = [c_j]$

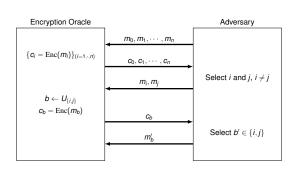
then choose [Hello] and [World] as challenges.

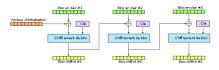




Conclusion

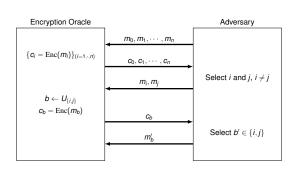
Which nonce may I choose?

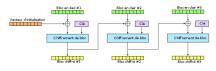




Case 1 - random, secret but repeated nonce

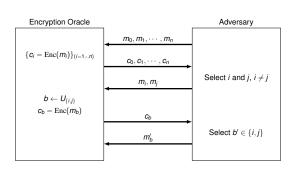
Nonce is selected at random at the start of communication and kept secret from adversary. Secure?

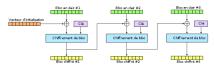




Case 1 - random, secret but repeated nonce

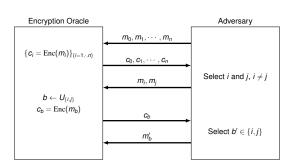
Still not CPA secure since adversary can select m_i and m_j before challenge and requests $c_i = \text{Enc}(m_i)$ and $c_j = \text{Enc}(m_j)$.

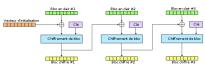




Case 1 - Conclusion

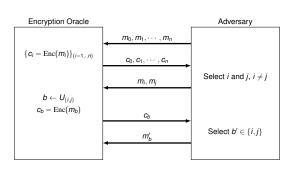
Nonce should not be used twice.

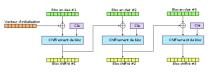




Case 2 - randomized, public but predictible

- Nonce is firstly selected at random.
- For next message, we just continue the chaining, i.e. last cipher block is taken as the new nonce. Secure? (case of TLSv1.0).

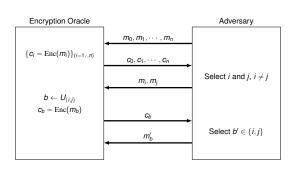


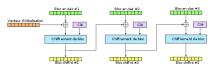


Case 2 - randomized, public but predictible

Select m_i such as $m_i = IV_{n-1} = last$ encrypted block

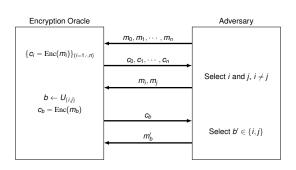
⇒ first block is the encryption of 0 under a free nonce.
 ⇒ deterministic.

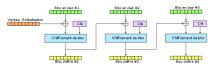




Case 2 - Conclusion

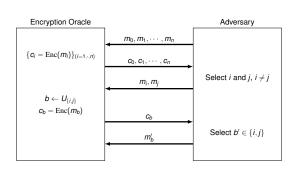
Nonce must not be predictible by adversary.

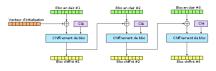




Case 3 - Random and unpredictible

Secure?

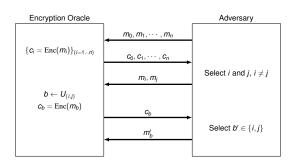




Case 3 - Random and unpredictible

Secure, but be carefull, you must send secretly to your corresponding the nounce used for next encryption and ensure integrity.

And what about the key? How often I must rene



CBC - theorem

For any length L > 0:

If PRP E is semantically secure over (K,X), then E used in CBC mode (E_{CBC}) is semantically secure under CPA over (K,X^{L},X^{L+1}) .

For adversary making *q*-query, then:

$$\mathcal{A}(E_{CBC}) \leq 2\mathcal{A}(E) + q^2L^2/|X|$$

Where |X| is the number of outputs possible for the permutation and L the

Vincent Migliore Cryptographie

Case of AES

- size of AES output: 128 bits;
- Target advantage: 2⁻⁸⁰.

Upper bound of encrypted blocks?

Case of AES

- size of AES output = 128 bits $\implies |X| = 2^{128}$;
- Target advantage = $2^{-80} \implies q^2 L^2/|X| = 2^{-80}$;
- $qL = \sqrt{2^{-80+128}} = 2^{24}$ encrypted blocks.

Conclusion: We must renew the key before reaching 2²⁸ bytes of encrypted data, i.e. 256 MB.

Case of AES

- size of AES output: 128 bits;
- Target advantage: 2⁻⁸⁰.

Upper bound of encrypted blocks?

Case of AES

- size of AES output = 128 bits $\implies |X| = 2^{128}$;
- Target advantage = $2^{-80} \implies q^2 L^2/|X| = 2^{-80}$;
- $qL = \sqrt{2^{-80+128}} = 2^{24}$ encrypted blocks.

Conclusion: We must renew the key before reaching 2²⁸ bytes of encrypted data, i.e. 256 MB.

Next lesson

How to ensure integrity?