
Integrity and Authentication

Vincent Migliore
vincent.migliore@insa-toulouse.fr

INSA-TOULOUSE / LAAS-CNRS

Summary of previous lesson

SP-Network

Input

Key

Substitution
Permutation

KD

Substitution
Permutation

KD

Substitution
Permutation

KD

Output

Construction of pseudo-random permutation
I Execution of several rounds parametrized by key.
I In practice, key is pseudo-random and permutation is fixed.
I The more round are executed (with a sufficently large key), the more

output is uniform and decorrelated from message.

SP-Network - in details

P1

P2

P3

P4

S1

S2

S3

S4

S

S

S

S

Sk KD

K1 K2 K3 K4

S1

S2

S3

S4

P

P1

P2

P3

P4

S1

S2

S3

S4

S

S

S

S

KD

K1 K2 K3 K4

S1

S2

S3

S4

P

P1

P2

P3

P4

S1

S2

S3

S4

KD

K1 K2 K3 K4

S-BOX:
→ Substitutes symbol to another.
→ Non-linear.
→ Provides confusion.
→ Complexify differential cryptanalysis.
→ Does not prevent frequency analysis.

P-BOX (or D-BOX):
→ Mix symbols of the entire state.
→ Linear.
→ Provides diffusion.
→ Complexify frequency analysis.

Symmetric encryption - Round of AES

Description of 1 round of AES:

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

P6

K1 K2 K3 K4

K5 K6 K7 K8

K9 K10 K11 K12

K13 K14 K15 K16

K6

KDSk

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

a6

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

a6SubBytes

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

a1 a2 a3 a4

a8 a5 a6 a7

a11 a12 a9 a10

a16 a13 a14 a15

ShiftRows

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

a6

a5

a7

a8

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

a6

a5

a7

a8

MixColumns

C1 C2 C3 C4

C5 C6 C7 C8

C9 C10 C11 C12

C13 C14 C15 C16

Symmetric encryption - case of AES (Rijndael - 2000)

Security
I AES is considered as a good PRP if implemented properly.
I Security depends on the number of rounds executed:

Name Key length (bits) Security rounds
AES-128 128 128 10
AES-196 196 192 12
AES-256 256 256 14

Encryption of larger messages - Mode of operation
Electronic Code Book (ECB)

Construction
The message is split into blocks matching the size of Block-Cipher’s block
length. Each block is encrypted with the same key.
Pros:

I Simplest construction.
I Destination can decrypt a specific block without extra computations.

Cons:
I Obviously insecure.

Encryption of larger messages - Mode of operation

Cipher Block Chaining (CBC)

Construction
Initialization Vector (IV = nonce) is XORed with input massage block. Then
encrypted block is XORed with next input message block.
Pros:

I IND-CPA Secure if IV is random, uniform and unpredictible.
Cons:

I No paralellization.
I decryption of block N requires decryption of all previous blocks.

Properties of integrity check code

Integrity check code

Input Output
f•

x1

•
f (xi)

•
x2

•
x3

Desirable properties
I Small code: Integrity check code must be very small compared to

message;
I Robustness against bitflips: A small change on the message greatly

change the code (avalanche effect);
I Impossible forgeability: Impossible to find pre-image from a given

code, impossible to find another messsage with same code,

Integrity check code→ Hash function

Input Output
f•

x1

•
f (xi)

•
x2

•
x3

Usual properties of cryptographic Hash functions
I First Pre-image resistant:

Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard
I Second Pre-image resistant (Weak collision resistance):

For a given m1, finding m2 such as H(m1) = H(m2) is hard
I Collision-resistant (Strong collision resistance):

finding m1 and m2 such as H(m1) = H(m2) is hard

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
Among all properties above, which one leads to most devastating attacks?

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
Among all properties above, which one leads to most devastating attacks?

Answer
First pre-image, since we can exploit any integrity check code.

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
We found an efficient algorithm A that find first pre-image. Does this mean
that finding second pre-image is simple?

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
We found an efficient algorithm A that find first pre-image. Does this mean
that finding second pre-image is simple?

Answer
Yes:

1. Compute H(m1).
2. Run algorithm A to find pre-image m2.
3. Done.

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
We found an efficient algorithm A2 that find second pre-image. Does this
mean that finding a collision is simple?

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
We found an efficient algorithm A2 that find second pre-image. Does this
mean that finding a collision is simple?

Answer
Yes:

1. Choose m1.
2. Run algorithm A2 to find m2.
3. Done.

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Conclusion
First pre-image attack =⇒ Second pre-image attack =⇒ Collision attack.
The opposite is not true in general.

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
You are communicating with a server that uses Hash function with first
pre-image resistance but not second pre-image resistance. Do you trust the
server?

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
You are communicating with a server that uses Hash function with first
pre-image resistance but not second pre-image resistance. Do you trust the
server?

Answer
Obviously not. You have no evidence that message downloaded is the good
one since server can find another file with same hash.

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
Same scenario at except that server is now trusty. Do you trust the file?

Integrity check code→ Hash function

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
Same scenario at except that server is now trusty. Do you trust the file?

Answer
No once again. Adversary in the middle can find another message m2 with
same hash and switch messages.

Hash function security:
worst case attack = exhaustive search?

Hash functions security

Birthday Attack
Consider a teacher with a class of 30 students asks for everybody’s birth
day. What is the probability that at least one student has the same birth day
than another student?

Answers
I 1−

(364
365

)30
= 7.9%

I 1− 365!
(365−30)!·36530 = 70%

Hash functions security

Birthday Attack
Consider a teacher with a class of 30 students asks for everybody’s birth
day. What is the probability that at least one student has the same birth day
than another student?

Answers
I 1−

(364
365

)30
= 7.9%

Probability that at least one student has a given birthday
I 1− 365!

(365−30)!·36530 = 70%
Probability that at least two students has the same birthday

Hash functions security

Why?
I P(at least two people have the same birth day)

= 1 - P(no one shares the same birth day).
I First student: 365/365
I Second student: 365/365− 1/365 (i.e. we remove the birth day of the

first student).
I third student: 365/365− 2/365.
I · · ·
I 30th student: (365− 29)/365.

Hash functions security

Why?

365− 0
365

× 365− 1
365

· · · 365− n − 1
365

=
∏ 365− i

365

=
1× 2 · · · (365− n)
1× 2 · · · (365− n)

∏ (365− i)
365

=
1× 2 · · · (365− n)
1× 2 · · · (365− n)

(365− n − i) · · · 365
365n

=
365!

(365− n)!.365n

Hash functions security

Previous answer
P = 1− 365!

(365−n)!.365n

Question
We consider a hash function f : ZM → ZH .
How many tries t an attacker should test to expect 50% chance of finding a
collision?

Answer
0.5 = 1− H!

(H−t)!.H t

Hash functions security

Previous answer
P = 1− 365!

(365−n)!.365n

Question
We consider a hash function f : ZM → ZH .
How many tries t an attacker should test to expect 50% chance of finding a
collision?

Answer
0.5 = 1− H!

(H−t)!.H t

Hash functions security - Some standard relations for
birthday attack

Notation
Let f : ZM → ZH be a hash function with H possible outputs. We note:

I p(n;H) the probability to find at least one collision after n tries;
I n(p;H) the number of tries before finding a collision with probability p.

Estimation of p(n;H)
p(n;H) = 365!

(365−n)!.365n ≈ 1− e−n2/(2H).
(Birthday attack exact formula + application of stirling formula(

n! ∼
√

2πn(n
e)

n
)

+ application of taylor expansion at order 2).

Estimation of n(p;H)
n(p;H) =

√
2H ln 1

1−p

Hash functions security - Some standard relations for
birthday attack

Notation
Let f : ZM → ZH be a hash function with H possible outputs. We note:

I p(n;H) the probability to find at least one collision after n tries;
I n(p;H) the number of tries before finding a collision with probability p.

Estimation of p(n;H)
p(n;H) = 365!

(365−n)!.365n ≈ 1− e−n2/(2H).
(Birthday attack exact formula + application of stirling formula(

n! ∼
√

2πn(n
e)

n
)

+ application of taylor expansion at order 2).

Estimation of n(p;H)
n(p;H) =

√
2H ln 1

1−p

Hash functions security - Some standard relations for
birthday attack

Notation
Let f : ZM → ZH be a hash function with H possible outputs. We note:

I p(n;H) the probability to find at least one collision after n tries;
I n(p;H) the number of tries before finding a collision with probability p.

Estimation of p(n;H)
p(n;H) = 365!

(365−n)!.365n ≈ 1− e−n2/(2H).
(Birthday attack exact formula + application of stirling formula(

n! ∼
√

2πn(n
e)

n
)

+ application of taylor expansion at order 2).

Estimation of n(p;H)
n(p;H) =

√
2H ln 1

1−p

Hash functions security - Some standard relations for
birthday attack

Question
Simplify equation n(p;H) =

√
2H ln 1

1−p considering p = 0.5 and H = 2L

Answer
n(0.5;2L) = 2L/2 × 1.1774

Hash functions security - Some standard relations for
birthday attack

Question
Simplify equation n(p;H) =

√
2H ln 1

1−p considering p = 0.5 and H = 2L

Answer
n(0.5;2L) = 2L/2 × 1.1774

Hash functions security - Numerical application

size of (H) H n(p;H) = 50%
16 bits 65 536 300
32 bits 4.3× 109 77 000
64 bits 1.8× 1019 5.1× 109

128 bits 3.4× 1038 2.2× 1019

256 bits 1.2× 1077 4.0× 1038

512 bits 1.3× 10154 8.0× 1076

Remark
The birthday attack is the worst case attack. It can be combined with
another algorithm to reduce complexity to make a collision.

Hash functions security

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
The birthday attack can be applyied to:

First pre-image attack.
Second pre-image attack.
Collision attack.

Hash functions security

I First Pre-image resistant:
Knowing hm1 = H(m1), finding m2 such as H(m2) = hm1 is hard

I Second Pre-image resistant (Weak collision resistance):
For a given m1, finding m2 such as H(m1) = H(m2) is hard

I Collision-resistant (Strong collision resistance):
finding m1 and m2 such as H(m1) = H(m2) is hard

Question
The birthday attack can be applyied to:

First pre-image attack.

Second pre-image attack.
Collision attack.

Construction of Hash function

Construction of a hash function - Merkle-Damgård
(MD5, SHA-1,SHA-2,...)

IV f

BLOCK0

M 1||0′s len(M)

f

BLOCK1

f

BLOCKn

hashed

I f is a compression function: produces an output strictly smaller than
input (input and output have fixed size);

I Input message is padded: making length of padded message be a
multiple of f input length;

I Merkle-Damgård strenghtening: Size of message is appended at the
end of padded message. It makes collision security of hash function
only relying on collision security of f .

Construction of a hash function - Merkle-Damgård,
case of MD5

IV f

BLOCK0

M 1||0′s len(M)

f

BLOCK1

f

BLOCKn

hashed

Configuration
Message is split into blocks of 64 bytes. f produces 128 bits IVs.

Limitations
I Birthday attack: 264 < 280 =⇒ not considered secured for modern

cryptography.
I Vulnerability to Chosen prefix collision attack (Steven’s et al. 2009):
∀(m1,m2), at most 239 calls are required to find (s1, s2) such as
MD5(m1||s1) = MD5(m2||s2). Has been successfully used to forge a
fake server certificate from legal authority.

Construction of a hash function - Merkle-Damgård,
case of MD5

IV f

BLOCK0

M 1||0′s len(M)

f

BLOCK1

f

BLOCKn

hashed

Other limitation
I MD5 computation is fast:

A GPU can compute about 150 million hashes per second
(Yanjun et al., 2014).

I Chosen Prefix Attack:
150 millions ∼ 227 =⇒ 239/227 = 212 sec = 1h 8m.

Construction of a hash function - Merkle-Damgård,
case of SHA

IV f

BLOCK0

M 1||0′s len(M)

f

BLOCK1

f

BLOCKn

hashed

Secure Hash Algorithm (SHA) familly
I SHA-1:

Collision in 260 calls (slightly better than MD5), but not secure from
modern cryptography point of view. (160 bit output)

I SHA-2:
I Different output sizes (SHA-224, SHA-256, SHA-384, SHA-512,...);
I No known vulnerability, just avoid implementations with 31/64 rounds.

I SHA-3:
Alternative to SHA-2 (not a replacement). More flexibility (can be used
to cover several cryptographic algorithms).

Hash function alone: secure?

Integrity with Authentication - AEAD (Authenticated
Encryption with Associated Data)

Limitation of Hash functions in practice
Consider a user which downloads a program from a legitimate server. What
an attacker can do if it intercepts communication?

Answer
It can replace program to malicious one, computes its hashes, and send
malicious program+hashes to user.

Counter-measure?
If user and server share a secret (unknown to attacker), they can use
construction called MACs (similar to hash functions) to authenticate
message.

First tentative - secret-prefix

Definition
For message m and secret value s, MAC = H(s||m).

Why it is bad?
Because Merkle-Damgård based hash functions are vulnerable to extension
attack.

IV f

BLOCK0

Ms 1||0′s len(M)

f

BLOCK1

f

BLOCKn

h f

BLOCK1

K

f

BLOCK2

0′slen(M + p + k)

h′

Principle
We note p the padding block of message s||m.
With pair (m,MAC = H(s||m)), an attacker can forge (m′,h′), where
m′ = M||p||K , and h′ obtained by hashing K with IV = h.

Second tentative - secret-suffix

Definition
For message m and secret value s, MAC = H(m||s).

Some architectural weaknesses remain
I Vulnerability on offline second-preimage attack (strong collision):

(i.e. For given m1, finding m2 such as H(m1) = H(m2)). An attacker can
search second pre-image offline (i.e. without information on the secret
s) and find m2. Then, attacker can substitute m1 by m2.

I Vulnerability on offline collision attack (weak collision):
(i.e. Find m1 and m2 such as H(m1) = H(m2)). If an attacker can ask an
authority to compute a MAC, then he asks a MAC for m1 and an
substitute this for m2.

More robust construction - HMAC
Definition
HMAC(Sk ,m) = H((Sk ⊕ opad)||H((Sk ⊕ ipad)||m))

Property - Relaxing strenghtening against collisions
Fundamental property of HMAC is that compression function may not be
collision resistant (only PRF is required) if used as intended =⇒ MD5 and
SHA-1 can be used for HMACs.

Weakness in case of malicious server - case of MD5
A server has computed a prefix p such as p||m1 and p||m2 collides
(i.e. MD5(p||m1) = MD5(p||m2)). What happens if Sk = p ⊕ ipad?

We note h0 = MD5(p||m1) = MD5(p||m2).

HMAC(Sk ,m1) = MD5((Sk ⊕ opad)||MD5(p||m1))

= MD5((Sk ⊕ opad)||h0)

HMAC(Sk ,m2) = MD5((Sk ⊕ opad)||MD5(p||m2))

= MD5((Sk ⊕ opad)||h0)

=⇒ collision!

More robust construction - HMAC
Definition
HMAC(Sk ,m) = H((Sk ⊕ opad)||H((Sk ⊕ ipad)||m))

Property - Relaxing strenghtening against collisions
Fundamental property of HMAC is that compression function may not be
collision resistant (only PRF is required) if used as intended =⇒ MD5 and
SHA-1 can be used for HMACs.

Weakness in case of malicious server - case of MD5
A server has computed a prefix p such as p||m1 and p||m2 collides
(i.e. MD5(p||m1) = MD5(p||m2)). What happens if Sk = p ⊕ ipad?

We note h0 = MD5(p||m1) = MD5(p||m2).

HMAC(Sk ,m1) = MD5((Sk ⊕ opad)||MD5(p||m1))

= MD5((Sk ⊕ opad)||h0)

HMAC(Sk ,m2) = MD5((Sk ⊕ opad)||MD5(p||m2))

= MD5((Sk ⊕ opad)||h0)

=⇒ collision!

More robust construction - HMAC
Definition
HMAC(Sk ,m) = H((Sk ⊕ opad)||H((Sk ⊕ ipad)||m))

Property - Relaxing strenghtening against collisions
Fundamental property of HMAC is that compression function may not be
collision resistant (only PRF is required) if used as intended =⇒ MD5 and
SHA-1 can be used for HMACs.

Weakness in case of malicious server - case of MD5
A server has computed a prefix p such as p||m1 and p||m2 collides
(i.e. MD5(p||m1) = MD5(p||m2)). What happens if Sk = p ⊕ ipad?

We note h0 = MD5(p||m1) = MD5(p||m2).

HMAC(Sk ,m1) = MD5((Sk ⊕ opad)||MD5(p||m1))

= MD5((Sk ⊕ opad)||h0)

HMAC(Sk ,m2) = MD5((Sk ⊕ opad)||MD5(p||m2))

= MD5((Sk ⊕ opad)||h0)

=⇒ collision!

More robust construction - HMAC
Definition
HMAC(Sk ,m) = H((Sk ⊕ opad)||H((Sk ⊕ ipad)||m))

Property - Relaxing strenghtening against collisions
Fundamental property of HMAC is that compression function may not be
collision resistant (only PRF is required) if used as intended =⇒ MD5 and
SHA-1 can be used for HMACs.

Weakness in case of malicious server - case of MD5
A server has computed a prefix p such as p||m1 and p||m2 collides
(i.e. MD5(p||m1) = MD5(p||m2)). What happens if Sk = p ⊕ ipad?

We note h0 = MD5(p||m1) = MD5(p||m2).

HMAC(Sk ,m1) = MD5((Sk ⊕ opad)||MD5(p||m1))

= MD5((Sk ⊕ opad)||h0)

HMAC(Sk ,m2) = MD5((Sk ⊕ opad)||MD5(p||m2))

= MD5((Sk ⊕ opad)||h0)

=⇒ collision!

Families of MAC algorithms

Block Cipher-based MACs (CMACs)
CMAC is built with a bloc cipher that operates in CBC mode.
NIST SP800-38B.
It’s an improvement of CBC-MAC that had vulnerabilities when messages
have variable length. A variant, XCBC-MAC was proposed in
2003(RFC3566, https://tools.ietf.org/html/rfc3566)

HASH function based MACs (HMACs)
HMAC (also called Keyed-hash message authentication code) is built with
hash function.

Integrity + Authenticity + Confidentiality
GMC and GMAC mode of operations of bloc ciphers.

Example of MACs implemented in OpenSSL
CMAC, GMAC, HMAC, KMAC, SipHASH, Poly1305 (Bernstein, selected by
google to replace RC4 in TLS/SSL).

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

Question
Which of these constructions provides fast output generation?

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

Question
Which of these constructions provides fast output generation?

Answer
Only Encrypt-and-MAC because Encryption and MAC computation can be
parallelized.

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

Question
Which of these constructions provides fast verification?

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

Question
Which of these constructions provides fast verification?

Answer
Only Encrypt-then-MAC because integrity can be verified on the ciphertext.
Encrypt-and-MAC and MAC-then-Encrypt needs decryption first.

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

Question
Does one of these constructions is vulnerable to Chosen-Plaintext Attack?

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

Question
Does one of these constructions is vulnerable to Chosen-Plaintext Attack?

Answer
Encrypt-and-MAC, because MAC only depends on the Plaintext. So, even if
Encryption is CPA-secure, Encrypt-and-MAC is not.

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

MAC-then-Encrypt security
MAC-then-Encrypt is IND-CPA secure, IND-CCA insecure =⇒ Vulnerable
for “dynamic” adversary, and protocol specific (BEAST, LUCKY 13, ...).1

1Bellare and Namprempre, Authenticated Encryption: Relations among notions and
analysis of the generic composition paradigm, Journal of Cryptology, 2000

MAC + Encryption: How to?

Plaintext

Encrypt Key Hash

Ciphertext MAC

Plaintext Key

Plaintext MAC

Hash

Encrypt

Ciphertext

Plaintext

Encrypt

Key

Ciphertext MAC

Hash

Encrypt-and-MAC
SSH

MAC-then-Encrypt
SSL-TLS

Encrypt-then-MAC
IPSEC

Encrypt-then-MAC security
Encrypt-then-MAC is IND-CPA, IND-CCA, NM-CPA, INT-PTXT, INT-CTXT
secure, if Encryption is IND-CPA and MAC strongly unforgeable (i.e.
adversary not able de forge a valid MAC on a previously authenticated
message).1

1Bellare and Namprempre, Authenticated Encryption: Relations among notions and
analysis of the generic composition paradigm, Journal of Cryptology, 2000

Hybrid constructions (implemented in TLS-v1.3)

AES-GCM

I Encryption is impleted with AES in counter mode to generate a
bitstream that is XORed with plaintext.

I MAC is generated by so called “Universal Hashing” using polynomial
hashing in a Galois field.

I Efficient: Can be parallelized, pipelinable and support also support
variable-length messages.

For more info, see 2

2David A. McGrew and John Viega, The Security and Performance of the Galois/Counter
Mode (GCM) of Operation, Indocrypt 2004

Hybrid constructions (implemented in TLS-v1.3)

AES-GCM

Question
Does AES-GCM follows Encrypt-and-MAC, MAC-then-Encrypt,
Encrypt-then-MAC or non of them construction?

Hybrid constructions (implemented in TLS-v1.3)

AES-GCM

Question
Does AES-GCM follows Encrypt-and-MAC, MAC-then-Encrypt,
Encrypt-then-MAC or non of them construction?

Answer
Encrypt-then-MAC.

Another use of Hash functions:
Password checking

Password checking

Password hashed and stored in database
I Because people use in general the same password for several

websites, it is critical that password must not be stored in plain.
I Even if stored hashed, if another website uses the same hash function,

it can be used “as is” to authenticate to this website.
I In general, passwords are composed in majority a small number of

alphanumerical values (so very low entropy), thus finding pre-image
generally leads to find the right password.

Password checking - time / space complexity

Use case - SHA1
Hashes has 20 bytes, 8 bytes alphanumerical password (36 values, no
uppercase).

No storage
I Number of combinations is 368 = 240 =⇒ brute force requires 240

calls to SHA-1 before expecting finding a password.
I Modern 4GHz CPU: 3.5 MHash/sec = 221 Hash/sec

=⇒ 219s = 40 days.

Full storage
Dictionnary of all possible hashes possible:

I Number of combinations: 368 = 240

I Time complexity: 240 dictionnary entry checking in the worst case, for
4 GHz processor = 232 op/sec. =⇒ 28 sec = 4 min.

I Space complexity: 243 bytes of storage (without password storage)
=⇒ 8 Terabytes of data!

Password checking - Rainbow table

source: wikipedia page

I H: hash function;
I R: reduce function (transform hashes to alphanumerical value);
I We only store left-most and right-most strings.

Password checking - Rainbow table

source: wikipedia page

attack
We note h the hashes obtained by attacker after a successfull attack.

I step 1: Check if h is in database. If it is, take the corresponding
password p and compute R2(H(R1(H(p)))) =⇒ done.

I step 2: Check if H(R2(h)) is in database. If it is, take the corresponding
password p and computes H(R1(H(p))) =⇒ done.

I step 3: Check if H(R1(H(R2(h)))) is in database. If it is, take the
corresponding password p =⇒ done.

I step 4: Fail.

Password checking - Strenghtening

source: wikipedia page

Strenghtening using random salt
I Before storing hashed password p, generate a large random number r

and store H(r ||p) and r .
I Rainbow tables are penalized since they are construct with usual

characters. Moreover, even if attack succeeds, attack still needs to
remove salt.

Strenghtening using slow hash functions
Since attacker must execute hash function many times and legitimate server
only one, slowing hash function drastically penalize attacker.

Other constructions

Proof of Work - Hashcash
To avoid spam or denial of service, we force the hashes of sender’s
message having, say 20 leading bits set to zero (using a customizable
header). Also used in bitcoins.

Key derivation
Since hash functions have uniform output, it can be used to make biaised
secret to uniform secret.

Next lesson:
Stream cipher

