David Delmas

Airbus Avionics Software

11 December 2018

AIRBUS

Avionics Software
®00

AIRBUS

Avionics Software
Software functions

Domain (C, asm)
o flight control systems DAL A
o flight warning systems DAL B or DAL C
@ communication systems DAL C
Domain (Java)
o administrative functions DAL E
@ maintenance support DAL E

Software platforms
LynxOS®-based POSIX Host Platform x86, DAL C
ARINC 653 Integrated Modular Avionics PowerPC, DAL A

. ®_ . . .
PikeOS®-based Avionics Server Function PowerPC, DAL C AIRBUS

Avionics Software
ooe

Critical avionics software is subject to certification:
o regulated by international standards (DO-178 rev. B/C)
o verification = more than half of the development cost

o mostly based on massive test campaigns & intellectual reviews

Current trend:

use of formal methods now acknowledged (DO-178C, DO-333)
o at the binary level, to replace testing
o at the source level, to replace intellectual reviews
o at the source level, to replace testing

provided the correspondence with the binary is also certified

AIRBUS

Security properties
©000000000

AIRBUS

Security properties
0®00000000

Aircraft software
Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication

AIRBUS

Security properties
0®00000000

Aircraft Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication

Navigation Surveillance & Air Traffic functions

Controller-Pilot communication (CPDLC)
Surveillance out of radar coverage (ADS)

ACARS/ATN data-link protocols over radio or satellite
(no cryptographic authentication or secrecy)

expected traffic growth
automated trajectory modification and negotiation
needed in the near future
increased focus on datalink security

AIRBUS

Security properties
0®00000000

Aircraft software
Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication

exponential complexity increase (SW, HW, networks)

harder to ensure freedom from security vulnerabilities

AIRBUS

Security properties
0®00000000
Aircraft software

Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication

Enhanced control automation, HMI comfort,
systems interoperability, configurability

exponential complexity increase (SW, HW, networks)

harder to ensure freedom from security vulnerabilities

Major trends in avionics

Q more and more generic avionics platforms

Q growing parts developed by third parties

AIRBUS

Security properties
00O®0000000

Major trends in avionics

More and more generic avionics platforms

standard HW & communication protocols
Commercial-Off-The-Shelf components
likely to be known to unspecialised attackers

Growing parts developed by third parties

less grip on processes

need for automated security assurance

AIRBUS

assets threats
Q aircraft operational safety

Q aircraft operational & dispatch reliability
Q commercial branding & image (Airbus & Airline)

Satellite

Cormmmunication

(SATCOM) y
& CONMNECTED RIRCRAFT '
AIREUS IS INTEERATING SECURITY AS (DSE.ZE:SEVTIFU
A CORE ACTIUITY FOR ALL AIRCRAFT

AT Gatelink (wireless)

ACARS
= Wide fraa (HF WHF Satcom])

service Hetwark .

Provider Maintenance :

Netwarks Operations B ‘i _

2
g;har::tlons Local Area Passenger
Irbernet Hacal A Bsasaid

AIRBUS

Security properties
[selele Tolelelele)

Federal Register: April 13, 2007

http://www.gpo.gov/fdsys/pkg/FR-2007-04-13/html/E7-7065.htm

FAA emitted special conditions for B787 certification bc

“The architecture of the Boeing Model 787-8 computer systems and networks may allow access to external systems and networks, such as wireless
airline operations and maintenance systems, satellite communications, electronic mail, the internet, etc. Onboard wired and wireless devices may also
have access to parts of the airplane’s digital systems that provide flight critical functions.” “These new connectivity capabilities may result in security
vulnerabilities to the airplane’s critical systems.”

January 2010: similar special conditions for B747-8
http://wuw.gpo.gov/fdsys/pkg/FR-2010-01-15/html/2010-661.htm

December 2013: similar special conditions for Airbus A350
https://federalregister.gov/a/2013-29985

December 2013: EASA requested all airborne systems with datalink capabilities to be
re-assessed for potential security vulnerabilities related to the processing of
misformatted messages.

AIRBUS

http://www.gpo.gov/fdsys/pkg/FR-2007-04-13/html/E7-7065.htm
http://www.gpo.gov/fdsys/pkg/FR-2010-01-15/html/2010-661.htm
https://federalregister.gov/a/2013-29985

Security properties
00000®0000

o RTCA Special Committee 216 (SC-216) to

“help ensure safe, secure and efficient operations amid the growing use of highly integrated electronic systems and network technologies used

on-board aircraft, for CNS/ATM systems and air carrier operations and maintenance.”

o RTCA SC-216 / EUROCAE WG-72 collaboration

Q Minimum Aviation System Performance Standards (MASPS) for Aeronautical
Electronic and Networked Systems Security

Q Security Assurance and Assessment Processes and Methods for Safety-related
Aircraft Systems

©Q ED-202 Airworthiness security process specification

Q@ ED-203 Airworthiness Security Methodology and Instructions

o State-of-the-art techniques should be proposed

AIRBUS

Security properties
000000®000

assets modified only by authorised parties in authorised ways

threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

AIRBUS

Security properties
000000®000
Integrity

assets modified only by authorised parties in authorised ways
threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

Confidentiality

assets read only by authorised parties

threats: leakage of sensitive secret information

protections: ciphering, partitioning, information flow control

AIRBUS

Security properties
000000®000
Integrity

assets modified only by authorised parties in authorised ways
threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

Confidentiality

assets read only by authorised parties

threats: leakage of sensitive secret information

protections: ciphering, partitioning, information flow control

Availability
assets are accessible to authorised parties in a timely manner

threats: denial of service attacks

AIRBUS

Security properties
0000000e00
Integrity

buffer overflow analyses (synchronous and asynchronous)
information flow analyses (trusted vs tainted)

formal proof of security functionalities

Confidentiality

information flow analyses (public vs secret) (also integrity)

formal verification of cryptographic protocols (also integrity)

quantitative assessment of crypto primitives (also integrity)
Availability

WCET and termination analyses

resource consumption analyses

AIRBUS

memory safety
integrity

Goal: no run-time error!

no buffer overflow, invalid pointer arithmetic or dereference
no overflows in float, integer, enum arithmetic and cast

no division, modulo by 0 on integers and floats

AIRBUS

memory safety
integrity

Goal: no run-time error!
no buffer overflow, invalid pointer arithmetic or dereference
no overflows in float, integer, enum arithmetic and cast

no division, modulo by 0 on integers and floats

Means of assurance
certified avionics = soundness required
internal software = C source code available

intellectual reviews costly and error-prone = automation
necessary

Solution: sound static analysis

AIRBUS

Security properties
000000000

Sendmail buffer overflow

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it (char * input , unsigned int length) {
char ¢ , localbuf [BUFFERSIZE];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while (inputIndex < length) {
c = input [inputIndex ++];
if ((¢ == '<') && (! quotation)) {
quotation = TRUE ; upperlimit --;

}
if ((¢ == '>') && (quotation)) {
quotation = FALSE ; upperlimit ++;

}
if ((c == "'(') & (! quotation) && ! roundquote) {
roundquote = TRUE ;

}
if ((¢ =="')') & (! quotation) && roundquote) {
roundquote = FALSE ; upperlimit ++;

if (outputIndex < upperlimit) {
localbuf [outputIndex] = c;
outputIndex ++;

}

}
if (roundquote)
localbuf [outputIndex] = ')'; outputIndex ++; }
if (quotation) {
localbuf [outputIndex] = '>'; outputIndex ++; } AIRBUS

return 0:

Static analysis
[1e)

e < 2
.
& u S e Q
S e Y
. E 2
e L \
Q.
LY &
S e
. .

AIRBUS

Static analysis
oce

Characteristics:

©

direct analysis of the source code (not a model)

0 automatic (easy to set up, no interaction with the user)

o efficient

0 approximate (to sidestep decidability and efficiency issues)
Soundness:

@ semantic-based (C specification, machine integers, floats, pointers, ...)

o full coverage of all control and data

o any property found by analysis holds on every program execution
= no error missed, no false negative

@ soundness is required by DO

Abstract interpretation: theory of the approximation of semantics

derive sound analysis with controllable cost/precision trade-off AIRBUS

Static analysis
©0000000000

o Abstract interpretation

AIRBUS

Static analysis
0®000000000

Define the concrete semantics of your system or program

concrete semantics = mathematical model of the set

of all its possible behaviours in all possible environments
can be constructed from semantics of commands
of system specification or programming language

AIRBUS

Static analysis
0®000000000

Define the concrete semantics of your system or program

concrete semantics = mathematical model of the set

of all its possible behaviours in all possible environments
can be constructed from semantics of commands
of system specification or programming language

Define a specification

specification = subset of possible behaviours

AIRBUS

Static analysis
0®000000000

Define the concrete semantics of your system or program

concrete semantics = mathematical model of the set

of all its possible behaviours in all possible environments
can be constructed from semantics of commands
of system specification or programming language

Define a specification

specification = subset of possible behaviours

Conduct a formal proof
that the concrete semantics meets the specification

use computers to automate the proof

AIRBUS

Static analysis
00®00000000

y ()

Possible
trajectories

\j
[

Semantics[|P|]
AIRBUS

Static analysis
000®0000000

Forbiden zone

Specification|| P|]
AIRBUS

Static analysis
0000@000000

z(t)

Forbidden zone

Possible

‘ trajectories
I

Semantics[|P|] C Specification[|P|]

AIRBUS

Static analysis
00000®00000

Undecidability

The concrete semantics of a system/program is not computable.

Most questions on system/program behaviour are undecidable.

AIRBUS

Static analysis
00000®00000

Undecidability

The concrete semantics of a system/program is not computable.

Most questions on system/program behaviour are undecidable.

Example: termination is undecidable

0 assume termination(P) always terminates and returns
true iff P always terminates on all input data

o the following program yields a contradiction

P := while termination(P)do ()done

AIRBUS

Static analysis
000000e0000

z(t)
Forbidden zone — Error !l!

Possible
trajectories

Test of a few trajectories

I

Subset of the possible behaviours = incomplete

AIRBUS

Static analysis
00000008000

Abstraction of the trajectories

Abstraction(Semantics[|P|])

AIRBUS

Static analysis
00000000e00

Forbidden zone

Abstraction of the trajectories

Abstraction(Semantics[|P|]) C Specification[| P|]

AIRBUS

Static analysis
00000000080

Forbidden zone

Abstraction of the trajectories

Semantics[|P|] C Abstraction(Semantics[|P|]) C Specification||P|]

AIRBUS

Static analysis
0000000000e

user-provided abstract semantics
A ¢ .
= finitary model
may be inferred by static analysis

user-provided abstract semantics
A
= inductive invariants
may be inferred by static analysis

abstract semantics computed automatically
£ predefined abstractions
may be tailored by the user

AIRBUS

Static analysis
©000000

o Example of abstract interpretation

AIRBUS

Static analysis
0®00000

o)

Possible
discrete
trajectories

AIRBUS

Static analysis
0080000

Collect the set of states that can appear on some trace at any given discrete time :

*———1

o

AIRBUS

Static analysis
000®000

This an abstraction. Does the red trace exist?
Trace semantics: no # collecting semantics:

Q—Q7i
9??\/-\ .

s

AIRBUS

Static analysis
0000000

(A — S

1 99 " 2

AIRBUS

Static analysis
0000000

a=

{z 1,99,y :[2,77]}

AIRBUS

Static analysis
000000

traces reachable states

set of (discrete) traces

Possible
discrete
trajectories

v
[y

AIRBUS

Static analysis
000000

traces reachable states

traces of sets of states

42 () . .

R
+“TT.¢'?:-§:‘.
T P am s v A Na
e N IR 1 <3
o ; R 2 B ¥
= MMPP B
e (2 ! - R o

- 1

AIRBUS

Static analysis
000000

traces reachable states

trace of sets of states

AIRBUS

Static analysis
000000

traces reachable states

trace of intervals

z(t)

AIRBUS

Static analysis
000000

traces reachable states

Effective computation : intialisation

Initial states

AIRBUS

Static analysis
000000

traces reachable states

Effective computation : propagation

z(t)

XX

H:E Interval transition

AIRBUS

Static analysis
000000

traces reachable states

Effective computation : widening unstable constraints

z(t)

Hm Ihterval trjansition ‘iNi'[h ;Widéningi

AIRBUS

Static analysis
000000

traces reachable states

Effective computation : widening unstable constraints

Interval itransitiorﬁ With Wi(;'ienirﬁg

> 1

AIRBUS

Static analysis
000000

traces reachable states

Effective computation : stability of interval constraints

AIRBUS

Static analysis
©000000e

x = 1;
1:

while x < 10000 do
2

X = x + 1

3:

od;
4.

AIRBUS

Static analysis
©000000e

Equations (abstract interpretation of the semantics)

X1 = [1,1]
Xo = (X1 U X3) N [—00,9999

1-X'i15 X3 = Xo®[1,1]
' while x < 10000 do X4 = (X1U X3)N[10000, +oo]
2.
v =% 41
3:
od;
4:

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 =[1,1]
=1, Xg = (X1 U X3) N [~00,9999]
1 , X3 = Xo®[1,1]
shile x < 10000 do (K47 (X1 U X3) N [10000, +-o0]
2:
X1=10
x = x + 1
3: Xo=10
| od: XS =0
4 Xy = 0

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 = [1,1]
% o= 1 Xo = (X1 U X3) N [—00,9999]
1. ’ X3 = X2 [1,1]
while x < 10000 do (X4 = (X1U X3)N[10000, +oo]
) X - (L1
W = v + 1
3: Xog =10
| od; X3=10
4: Xy =10

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 = [1L,1]
=1, X2 = (X1 U X3) N [~00,9999]
1: ’ X3 = Xo® [1,1]
while x < 10000 do X4 = (X1UX3)N[10000, +oo]
2: X1 =[1,1]
e = x + 1
3: Xz = [1,1]
| od; X3=10
4: Xg =10

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

Xy = [1,1]
= 1, Xo = (X1 U X3) N [—00,9999]
1: ’ X3 = Xo@[1,1]
shile x < 10000 do (4~ (X1 U X3) N [10000, +-00]
2: X = [1,1]
e = x + 1
3: X2 - [111]
| od; X3 = [2,2]
4: Xy = 0

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 =[1,1]
x = 1; Xo = (X1U X3) N [—00,9999]
1. ’ X3 = X2 [1,1]
while x < 10000 do (X4 = (X1U X3)N[10000, +oo]
2. B X1 = []_,]_
3: X2 - [1)2}
| X3 = [2,2]
od; X 0
4: 4 =

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 =1[1,1]
% = 1 X5 = (X1 U X3) N [—00,9999]
i ’ X3 = Xo@[1,1]
while x < 10000 do X4 = (X1U X3)N[10000, +oo]
L. ey
3: Xo = [1,2]
| X3 = [2,3]
od;
X4 =
4:

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 = [1,1]
x o= 1, Xo = (X1U X3) N [—00,9999
1: ’ X3 =Xo@®[1,1]
while % < 10000 do X4 = (¥1U X3)N {10000, +o0]
2 B X1 = [1,1]
3: X2 = [1)3}
| X3 =[2,3
od; i — 0
4. 4 =

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1=[1,1]
= 1; Xy = (X1 U X3) N [—00,9999]
1: ’ X3 = Xo@[1,1]
while x < 10000 do X4 = (X1U X3)N[10000, +oo]
2: X1 =1[1,1]
¥ =% + 1
| X3 = [2,4]
od;
Xy =
4:

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 =111
X = 1 Xo = (X1 U X3) N [~00,9999]
1: ! X3 =Xo®[1,1]
ihile x < 10000 do X4 = (X1UX5)N[10000, +oo]
2) . X1 = [1,]_
3 _ Xy = [1,4]
| d; X3 = [2,4
oa; X4 _
4:

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 =111
v o= 1 X7 = (X1U X3) N [—0c0,9999]
1. ’ X3=Xo@[1,1]
ihile x < 10000 do 54 = (X1UX3)N[10000, +o00]
: X :=x + 1 X1 - [1)1]
3: Xo =11,4]
| od; X3 = [2,5]
4 : X4=10

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 = [1,1]
=1; Xo = (X1 U X3) N [—00,9999]
1 , X3 = Xo®[1,1]
shile x < 10000 do (K47 (X1 U X3) N [10000, +-o0]
2: X1 = [1,1]
e = x + 1
3: Xy =[1,5]
| X3 = [2,5
od;
4: Xg4=10

AIRBUS

Static analysis
©000000e

Resolution by increasing iterations

X1 =1[1,1]
= 1; Xo = (X1 U X3)N[—00,9999]
1: ’ X3 = Xo®[1,1]
shile x < 10000 do X4 = (X1U X3)N {10000, +oo]
2: X; = [L1]
x = x + 1
N Xy = [1,5]
| od; X3 = [2 6]
: X4 —_—
4:

AIRBUS

Static analysis
©000000e

Convergence speed-up by widening

X1 =1[1,1]
= 1, Xo = (X1 U X3) N [~00,9999
1: ’ X3 = Xo®[1,1]
while x < 10000 do X4 = (X1U X3)N[10000, +co]
2 B X1 = [1,1]
3: X = [1,+00] <« widening
| X3 = [2,6]
od; i — 0
4. 4 =

AIRBUS

Static analysis
©000000e

Decreasing iterations

X1 =1[1,1]
= 1; Xo = (X1 U X3) N [—00,9999]
1: ’ X3 = Xo®[1,1]
shile x < 10000 do (K47 (X1 U X3) N [10000, +-o0]
2: X = v 4+ l Xl - [1,1]
3: Xy = [1, +o0]
' od: X3 = [2,+00]
od;
4 X4=10

AIRBUS

Static analysis
©000000e

Decreasing iterations

X = 1;
1:

while x < 10000 do
2.

x =x + 1

3.

od;
4.

Xl — [1: 1}

Xo = (X1 U X3) N [—00,9999]
X3 — X2 52 [11 1}

X4 = (X1 U X3)N[10000, +o0]
X1 =[1,1]

Xy = [1,9999]

X3 = [2 o]

X4 =

AIRBUS

Static analysis
©000000e

Decreasing iterations

x = 1;
1:

while x < 10000 do
2

x = x + 1

3

od;
4:

X1 = [1!1}

X = (X1 U X3) N [—00,9999]
X3 = Xo[1,1]

X4 = (X1 U X3)N[10000, +o0]
X1 = [11]

X9 = [1,9999]

X3 = [2,+10000}

X =

AIRBUS

Static analysis
©000000e

Final solution

x = 1;
1:

while x < 10000 do
2

x = x + 1

3.

od;
4.

X1 = [11 1}

Xy = (X1 U X3) N [—00,9999]
X3 =X [1,1]

X4 = (X1 U X3) N [10000, +oo]
X1 = [1= 1]

X9 = [1,9999]

X3 = [2,+10000]

X4 = [+10000, +10000]

AIRBUS

Static analysis
©000000e

Result of interval analysis

Xl — [1:1}
=1 X = (X1 U X3) N [—00,9999]
1: {x=1} X3 =Xo®[1,1]

while x < 10000 do 54~ (X1 U X3) N [10000, 400

2: {x € [1,9999]}

X1 =[1,1]
P Xy = [1,9999]
ot e) = [1,
3: ize 2, +10000]} X — [2,410000]
4: {x = 10000} X4 = [+10000, +10000]

AIRBUS

Static analysis
©000000e

Formal proof of absence of overflow

x = 1;
1: {x=1}
while x < 10000 do

2: {x €[1,9999]}
<— no overflow

x =x +1
3. {x € [2,+10000]}
od;
4: {x = 10000}

AIRBUS

Static analysis
©0000

. .
oo L e
“ay
!Q~

o False alarms

AIRBUS

Static analysis
0®000

Forbidden zone Alarm !!!

Error or false alarm ?

AIRBUS

Static analysis
0000

Alarm !!!

AIRBUS

Static analysis
0000

Forbidden zone

False alarm

AIRBUS

Static analysis
ooooe

z(t)

Forbidden zone

Ealse alarms

/ Possible
trajectories
Imprecise trajectory abstraction by intervals
t

= need for abstraction refinement
AIRBUS

Static analysis
®00000000000

o Abstraction refinement

AIRBUS

How to approximate {f1, 2, f3,fa}?

AIRBUS

Static analysis
0O®000000000

f(t)

AIRBUS

000®00000000

f(t)

AIRBUS

Static analysis
0000®0000000

f(c) h

Ji.tell.hl:fi(t) <m?

Mi ti the f;
in/ questions on the f; AIRBUS

Static analysis
00000®000000

f(c)

Ji,te [Lh]:fi(t) > M? 1 don’t know

m

di,te[lLh]:fi(t) <m? No

Mi ti the f;
in/max questions on the f; AIRBUS

Static analysis
000000®00000

f(t)

i f n.
No concrete case is ever forgotte AIRBUS

Static analysis
000000080000

f(t)

AIRBUS

Static analysis
000000008000

f(t)

AIRBUS

Static analysis
000000000800

f(c)

d and lete abstraction for mi ti the f;
Sound and complete abstraction for min/ questions on the f; AIRBUS

Static analysis
000000000080

f(c)

Sound and i lete abstraction for mi ti the f;
ound anad /ncompiete abstraction tor mln/max questions on € T AIRBUS

Static analysis
00000000000e

AIRBUS

Static analysis
®000

o Abstract domains

AIRBUS

Static analysis
0®00

z(t)

Forbidden zone

Ealse alarms

/ Possible
trajectories
Imprecise trajectory abstraction by intervals
t

= need for abstraction refinement
AIRBUS

intervals
x,y € [a, b]
Yy

octagons
NExty<c

Static analysis

congruences polyhedra
x,y €aZ+b /\Zia;X,‘Sb
Y y
t
ellipsoids geometric deviations
x>+ by? —axy < d ly| < a(1+ b)k

AIRBUS

Static analysis
ocooe

Semantics
y A

> T

(In)finite sets of (in)finite traces

AIRBUS

Static analysis
ocooe

Invariant abstraction: set of reachable states
y A

Set of points (xj, y;), Hoare logic

AIRBUS

Sign abstraction

yll
+ o+ +
+ +
+ +
* + o L . +
* + + +
* + +
+ +
o
+ + "
+
+ +
> T
x>0,y>0

AIRBUS

Static analysis

Combinations of abstractions

Interval abstraction

AIRBUS

Static analysis
ocooe

Octagon abstraction

yJ

+x+y<b
AIRBUS

Static analysis
ocooe

Polyhedral abstraction

a-x+b-y<c
AIRBUS

Static analysis
ocooe

Ellipsoidal abstraction

(x—aP+(y—b3?<c
AIRBUS

Static analysis
ocooe

Exponential abstraction

AIRBUS

Static analysis
©00000000000000

St ¥
Q.
e,

o Run-time error analysis

AIRBUS

Static analysis
0®0000000000000

Concrete semantics specification

Concrete semantics source
o C99 standard (portable C programs)
o IEEE 754-1985 standard (floating-point arithmetic)
o architecture parameters (sizeof, endianess, struct, etc.)

o compiler and linker parameters (initialization, etc.)

AIRBUS

Static analysis
0®0000000000000

Concrete semantics specification

Concrete semantics source

©

C99 standard (portable C programs)
IEEE 754-1985 standard (floating-point arithmetic)

architecture parameters (sizeof, endianess, struct, etc.)

©

©

©

compiler and linker parameters (initialization, etc.)

Run-time errors

o overflows in float, integer, enum arithmetic and cast
o division, modulo by 0 on integers and floats
o invalid pointer arithmetic or dereferencing

o violation of user-specified assertions

AIRBUS

Static analysis

00®000000000000

© A. Miné

intervals congruences
x,y € [a, b] x,y €al+b
Y Yy Y
t
octagons ellipsoids geometric deviations
ANEtx+ty<c x2+by? —axy < d ly| < a(l+ b)<t

relational domains are necessary to infer precise bounds
AIRBUS

Static analysis
000®00000000000

ASTREE

A S

A static analyzer_ for C programs
o developed by CNRS/ENS (from 2002) and AbsIint GmbH

o commercialised by AbsInt since 2010

AIRBUS

Static analysis
000®00000000000

ASTREE

A S

A static analyzer_ for C programs
o developed by CNRS/ENS (from 2002) and Absint GmbH
o commercialised by AbsInt since 2010

Q sound and automatic, scales up to very large programs

Q specialised for control-command programs = few false alarms

©Q parametric = fine-tuning by end-users

AIRBUS

Static analysis
000®00000000000

ASTREE

A S

A static analyzetr for C programs
o developed by CNRS/ENS (from 2002) and AbsIint GmbH

o commercialised by AbsInt since 2010

Characteristics
Q sound and automatic, scales up to very large programs
Q specialised for control-command programs = few false alarms

Q parametric = fine-tuning by end-users

Deployment at Airbus

A380/A400M/A350 fly-by-wire control software (DAL A)

successful proofs of absence of run-time error
6 hours for 700,000 lines of C

all new software products (on-going effort) AIRBUS

Static analysis

000080000000 000

Sendmail buffer overflow

true alarms detected

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it (char * input , unsigned int length) {
char ¢ , localbuf [BUFFERSIZE];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while (inputIndex < length) {
c = input [inputIndex ++];
if ((¢ == '<') && (! quotation)) {
quotation = TRUE ; upperlimit --;

}
if ((¢ == '>') && (quotation)) {
quotation = FALSE ; upperlimit ++;

if ((c == "'(') & (! quotation) && ! roundquote) {
roundquote = TRUE ; upy d 1

if ((¢ =="')') & (! quotation) && roundquote) {
roundquote = FALSE ; upperlimit ++;

If there is s nt space in

if (outputIndex < upperlimit) {
localbuf [outputIndex] = c;
outputIndex ++;

}

if (roundquote)

localbuf [outputIndex] = ')'; outputIndex ++; }
if (quotation) {

localbuf [outputIndex] = '>'; outputIndex ++; }

‘ AIRBUS

Static analysis
00000@000000000

Sendmail buffer overflow

fixed but false alarms still

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it (char * input , unsigned int length) {
char ¢ , localbuf [BUFFERSIZE];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while (inputIndex < length) {
c = input [inputIndex ++];
if ((¢ == '<') && (! quotation)) {
quotation = TRUE ; upperlimit --;

}
if ((¢ == '>') && (quotation)) {
quotation = FALSE ; upperlimit ++;

if ((c == '(') & (! quotation) && ! roundquote) {
roundquote = TRUE ; upperlimit--;

}
if ((¢ =="')') & (! quotation) && roundquote) {
roundquote = FALSE ; upperlimit ++;

if (outputIndex < upperlimit) {
localbuf [outputIndex] = c;
outputIndex ++;

}

if (roundquote)

localbuf [outputIndex] = ')'; outputIndex ++; }
if (quotation) {

localbuf [outputIndex] = '>'; outputIndex ++; }

AIRBUS

return 0:

Static analysis

00000000

Sendmail buffer overflow

fixed and tuned zero alarm

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it (char * input , unsigned int length) {
char ¢ , localbuf [BUFFERSIZE];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
__ASTREE_boolean_pack((upperlimit, inputIndex, outputIndex ; quotation,
roundquote));
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while (inputIndex < length) {
c = input [inputIndex ++];
if ((¢ == '<') && (! quotation)) {
quotation = TRUE ; upperlimit --;

}
if ((¢ == '>') && (quotation)) {
quotation = FALSE ; upperlimit ++;

}
if ((¢ == '(') & & (! quotation) && ! roundquote) {
roundquote = TRUE ; upperlimit--; // ¢ tati

bug

}
if ((¢ ==")') & (! quotation) && roundquote) {
roundquote = FALSE ; upperlimit ++;

/ I there is s >1ent s n

if (outputIndex < upperlimit) {
localbuf [outputIndex] = c;
outputIndex ++;

__ASTREE_assert((outputIndex <= BUFFERSIZE-10));
3}

if (roundquote) {
localbuf [outputIndex] = ')'; outputIndex ++; } AIRBUS

if (quotation)

Static analysis
0000000e0000000

Concrete semantics specification

Model: real-time operating system

o fixed set of concurrent threads on a single processor

o shared memory (implicit communications)

o synchronisation primitives (fixed set of mutexes)

o real-time scheduling with fixed priorities (priority-based)
e.g. A380/A400M/A350 IMA, A350 ASF, SA/LR ATSU

o mono-threaded startup # multi-threaded run (restriction)

v

AIRBUS

Static analysis
0000000e0000000

Concrete semantics specification

Model: real-time operating system

o fixed set of concurrent threads on a single processor

o shared memory (implicit communications)

o synchronisation primitives (fixed set of mutexes)

o real-time scheduling with fixed priorities (priority-based)
e.g. A380/A400M/A350 IMA, A350 ASF, SA/LR ATSU

o mono-threaded startup # multi-threaded run (restriction)

Run-time errors

©

classic C run-time errors (overflows, invalid pointers, etc.)

©

unprotected data-races (report & factor in the analysis)

o incorrect system calls, deadlocks

()

but NOT livelocks, priority inversions AIRBUS

Static analysis
00000000e000000

ASTREEA

An extension of ASTREE

o Analyseur Statique de logiciels Iemps—&éel Embarqués
Asynchrones

o developed by CNRS/ENS/INRIA since 2009
1%t official merge with Abslnt’'s commercial ASTREE

AIRBUS

Static analysis
00000000e000000

ASTREEA

An extension of ASTREE

o Analyseur Statique de logiciels Iemps—&éel Embarqués
Asynchrones

o developed by CNRS/ENS/INRIA since 2009
1%t official merge with Abslnt’'s commercial ASTREE

results with Airbus

static analysis of A380 FWS

o 15 processes
2 million lines of C
o nested loops, complex data structures

900 alarms

AIRBUS

Static analysis
0000000000000

producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] « v; w < b[j];
i+ i®nl; j— DN,
signal(c’); unlock(m);
unlock(m) signal(c);

consommer ressource w

AIRBUS

Static analysis
0000000000000

producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] + v; w <+ b[j];
i+ i®y]1; J—Jjoen;
signal(c’); unlock(m);
unlock(m) signal(c); WARN: mutex unlocked
consommer ressource w

WARNS: data-races (dans le modele)

AIRBUS

Static analysis
00000000000e000

producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] « v; w < b[j];
i+ i®nl; j— DN,
signal(c’); signal(c¢);
unlock() unlock(m);

consommer ressource w

AIRBUS

Static analysis
0000000000000

producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] < v; WARN: array out of bounds w < b[j];
i < i+1; WARN: integer overflow j+—Jjenl;
signal(c’); signal(c);
unlock() unlock(m);

consommer ressource w

AIRBUS

Static analysis
0000000000000e0

producteur consommateur

produire ressource v
lock(m); loek{+):

while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
WARN: mutex not owned

bli] < v; w < b[j];
i i@yl J—Jjenl;
signal(c’); signal(c); WARN: mutex unlocked

unlock(m) unlock{ };

consommer ressource w

WARNS: data-races

AIRBUS

Static analysis
00000000000000e

producteur consommateur
produire ressource v
lock(m); lock(m');
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m');
b[i] < v; w < b[j];
i+ i®n1; j+—Jj®n T,
signal(c’); WARN: mutex unlocked signal(c); WARN: mutex unlocked
unlock() unlock(m’);

consommer ressource w

WARNS: data-races

AIRBUS

Operational semantics
[1}

e < 2
.
& u S e Q
S e Y
. E 2
e L \
Q.
LY &
S e
. .

AIRBUS

Operational semantics
oce

Operational semantics

Mathematical description of the execution of programs

Q a model of programs: transition systems

o definition, a small step semantics
o example: a simple imperative language

Q trace semantics: a families of big step semantics

o finite and infinite executions
o fixpoint-based definitions

AIRBUS

Operational semantics
©000000000

o Transition systems and small step semantics

AIRBUS

Operational semantics
0®00000000

We will characterize a program by:
o states: photography of the program status at an instant of the execution

o execution steps: how do we move from one state to the next one

Definition: transition systems (TS)

A transition system is a tuple (S, —) where:
o S is the set of states of the system
o —»C P(S x S) is the transition relation of the system

Note:

o the set of states may be infinite

AIRBUS

Operational semantics
0O®0000000

We now look at a more classical imperative language (intuitively, a bare-bone subset
of C):

o variables X: finite, predefined set of variables

o labels LL: before and after each statement

o values V: Vi UVgoat U ...

e 1= veEVir UVt U...|etelexe]... expressions
c = TRUE | FALSE | e<e | e=e conditions
i = x:1=e¢; assignment
| if(c)belseb condition
| while(c) b loop
b = {i;...;i;} block, program(IP)

l-\ll(éus

Operational semantics
000®000000

A non-error state should fully describe the configuration at one instant of the
program execution:

o the memory state defines the current contents of the memory
meM=X—YV

o the control state defines where the program currently is

o analoguous to the program counter
o can be defined by adding labels L = {f, 4, ...} between each pair of consecutive
statements; then:

S=LxMu{Q}

AIRBUS

Operational semantics
0000®00000

o The semantics [e] of expression e should evaluate each expression into a value,
given a memory state

o Evaluation errors may occur: division by zero...
error value is also noted Q

Thus: [e] : M — Vu {Q}
Definition, by induction over the syntax:

[vl(m) = v
[x](m) = m(x)
[eo +e1](m) = [[eoglé(m)i[[el]](m) £ [e](m) = 0
if [e1](m) =
[eo/e1](m) = {[[eo]](m)/[[elﬂ(m) otherwise

where & is the machine implementation of operator &, and is Q-strict, i.e.,
Vv eV, veQ = Qv = Q. AIRBUS

Operational semantics
0000080000

o The semantics [c] of condition c should return a boolean value

o It follows a similar definition to that of the semantics of expressions:
HCH M — Voo & {Q}

Definition, by induction over the syntax:

[TRUE](m) = TRUE
[FALSE](m) = FALSE

TRUE if [eq](m) < [e1](m)

[eo < ei](m) = FALSE if [eq](m) > [e1](m)
Q if [eo](m) = Q or [e1](m) =Q
TRUE if [eq](m) = [e1](m)

[eo =ei](m) = FALSE if [eq](m) # [e1](m)
Q if [eo]l(m) = Q or [e1](m) = Q

AIRBUS

Operational semantics
000000®000

We now consider the transition induced by each statement.

Case of assignment [: x =¢; [
o if [e](m) # €, then (f, m) — (G4, m[x < [e](m)])
o if [e](m) = Q, then (fh,m) — Q

Case of condition f : if(c){4 : bs L} else{5 : b 4} 5
o if [c](m) = TRUE, then (l,m) — (&4, m)

o if [c](m) = FALSE, then (f,m) — (&, m)
o if [c](m) =, then (o, m) — Q

o (&,m) = (&,m)

o (la,m) = (&5, m)

AIRBUS

Operational semantics
0000000800

Case of loop fp : while(c){4 : b: b} &
(lo, m) — (f, m)
(&,m) — (a,m)

(o, m) = (B, m)
(b, m) — (B, m)

o if [c](m) = TRUE, then {

o if [c](m) = FALSE, then {

. , Q
o if [c](m) = Q, then { Eg Z; : Q
Caseof {lp :di0;h . i lp—1in—1;ln}

o the transition relation is defined by the individual instructions

AIRBUS

Operational semantics
0000000080

The language we have considered so far is a bit limited:
o it is deterministic: at most one transition possible from any state

o it does not support the input of values

Changes if we model non deterministic inputs...

. with an input instruction:
o in=...| x:=input()
o [p: x = input(); ; generates transitions
Vv eV, (b,m) = (4,mx < v])

@ one instruction induces non determinism

AIRBUS

Operational semantics
000000000e

C language:
o several norms: ANSI C'99, ANSI C'11, K&R...

o not fully specified:

o undefined behavior

o implementation dependent behavior: architecture (ABI) or implementation
(compiler...)

o unspecified parts: leave room for implementation of compilers and optimizations

o formalizations in HOL (C'99), in Coq (CompCert C compiler)

OCaml language:
o more formal...

o ... but still with some unspecified parts, e.g., execution order

AIRBUS

Operational semantics
[Jelelolole}

St ¥
Q.
e,

o Traces semantics

AIRBUS

Operational semantics
0®0000

o So far, we considered only states and atomic transitions

o We now consider program executions as a whole

Definition: traces

o A finite trace is a finite sequence of states s, ..., sp, noted (sp,...,sn)

o An infinite trace is an infinite sequence of states (s, . ..)

Besides, we write:
o S* for the set of finite traces
o SY for the set of infinite traces

o S* =S*USY for the set of finite or infinite traces

AIRBUS

Operational semantics
[e]eY Yolole}

We consider a transition system S = (S, —)

Definition

The finite traces semantics [S]* is defined by:

[[S]]* = {<.§o, .. .,s,-,> es” | Vi, Ssi — 5,'+1}

Example:
o contrived transition system S = ({a, b, ¢, d},{(a, b), (b, a), (b, c)})

o finite traces semantics:

[S]* = { (ab,...,a,b,a), (b,a,...,a,b,a),
(a,b,...,a,b,a,b), (b,a,...,a, b,a,b),
(a,b,...,a,b,a,b,c), (bya,...,ab,a,b,c)
{c), (d) }

AIRBUS

Operational semantics
00000

Similarly, we can write the traces of a simple imperative program:

b: x=1, T = (o lx = %0,y = yob). (& (x = L,y = yo)).
h:y:=0 (6, (x = 1,7 = 0)), (b, (x = 1,y = 0)),
L : while(x < 4){ (4, (x =1,y =1)),(6, (x =2,y =1)),
[3: y:y+X, ([37(]}(:2737:1[))7([47(])(:27}7: D)v
fy: x =x+1; (5, (x =3,y =3)), (5, (x =3,y =3)),
ﬁ:’: } ([47(]XI37y:6D)7([5’(]XZ47y: D)v

le - (final program point) (. (e =4,y =6))

o very precise description of what the program does...

o ... but quite cumbersome

AIRBUS

Operational semantics
00000

We define a semantic function, that computes the traces of length i 4+ 1 from the
traces of length i (where i > 1):

Let Z = {e} W{(s) | s € S}.
Let F, be the function defined by:

F.: P(S*) — P(S)
X — X U{(s0,--,8n8n+1) | (50,--,5n) € X Asp = spy1}

Then, F; is continuous and thus has a least-fixpoint greater than Z; moreover:

Ifpz A = [ST* = Upen F4(Z)

AIRBUS

Operational semantics
00000®

Example, with the same simple transition system S = (S, —):
o S={a,b,c,d}
o — is defined by a— b, b —+aand b — ¢

Then, the first iterates are:

FAZ) = {e(a),(b),{c),(d)}

F*I(I) = FS(I)U{<bva>a<avb>v<b’c>}

FE(I) = F*l(I)U{<a,b,a),(b,a,b>,<a,b,c>}

F3(Z) = F2(Z)u{(b,a,b,a),{a,b,a,b), (b, ab,c)}
FXTI) = F3(Z)u{{a,b,a,b,a),(b,a,b,a,b)(ab,ab,c)}
F>(7) = ...

o the traces of [S]* of length n+ 1 appear in F](Z)
AIRBUS

Operational semantics
®0

o Summary

AIRBUS

Operational semantics
oe

We have discussed:

o small-step / structural operational semantics: individual program steps
o big-step / natural semantics: program executions as sequences of transitions

o their fixpoint definitions and properties

Next:
o another family of semantics, more compact and compositional

o semantic program and proof methods

AIRBUS

; \
e - |
\h"‘i\ '\
% x
SN
“a,
LI
S
. .

AIRBUS

Denotationa
oeo

Operational semantics
Defined as small execution steps (transition relation)
over low-level internal configurations (states)

Transitions are chained to define (maximal) traces
possibly abstracted as input-output relations (big-step)

Denotational semantics

Direct functions from programs to mathematical objects (denotations)
by induction on the program syntax (compositional)
ignoring intermediate steps and execution details (no state)

= Higher-level, more abstract, more modular.
Tries to decouple a program meaning from its execution.
Focus on the mathematical structures that represent programs.
(founded by Strachey and Scott in the 70s: [Scott-Strachey71])

“Assembly” of semantics vs. “Functional programming” of semantics

AIRBUS

o imperative programs

effect of a program: mutate a memory state
natural denotation: input/output function
D ~ memory — memory

challenge: build a whole program denotation
from denotations of atomic language constructs (modularity)

= very rich theory of mathematical structures
(Scott domains, cartesian closed categories, coherent spaces, event structures,
game semantics, etc. We will not present them in this overview!)

AIRBUS

Denotationa
®0000

o

o Deterministic imperative programs
AIRBUS

Denotationa
0®000

IMP expressions

expr = X (variable)
’ c (constant)
| <& expr (unary operation)

eXpr & expr (binary operation)

o variables in a fixed set X € V
o constants Z & BUZ:
o booleans B < { true, false }
o integers Z
o operations ¢:
o integer operations: +, —, X, /, <, <
o boolean operations: —, A, V

o polymorphic operations: =, # AIRBUS

Denotationa
00®00

Statements
stat = skip (do nothing)
‘ X + expr (assignment)
| stat; stat (sequence)
| if expr then stat else stat (conditional)
| while expr do stat (loop)

(inspired from the presentation in [Benton96])

AIRBUS

Denotationa
000®0

Elexpr] : € —~1

. lef . . .
o environments £& = V — 7 map variables in V to values in 7

©

E[expr] returns a value in Z

©

— denotes partial functions (as opposed to —)

necessary because some operations are undefined
o 14 true, 1A2 (type mismatch)
o 3/0 (invalid value)

©

defined by structural induction on abstract syntax trees
(next slide)

(when we use the notation X[y], y is a syntactic object; X serves to distinguish between different semantic
functions with different signatures, often varying with the kind of syntactic object y (expression, statement,

etc.);

X[y]z is the application of the function X[y] to the object z) AIRBUS

Denotationa
ooo0e

Elc]p def ¢ S8

E[Vp Eopv) ez

E[—e]p EC Y €z ifv=E[elpeZ

E[-e]p ECY €B ifv=E[e]peB

Eler +e]p def vitw €Z ifvi=Ele]p€Z vu=E]lelpeZ
E[e1 —ex]p def vi—ve €7 ifvi=EJ|e]peZ,va=E[e]pcZ
Eler x e2]p def vixve €Z ifvi=E[e]peZ,va=E[e]pclZ

E[expr] : € = I Ela/elr % w/w €z fw=EealpcZv.=ElelpcZ)\{0}

Elarelr % wAw €B ifw=E[e]peB vw=E[e]pcB
Elavelr % wvw €B ifwu=E[elpcB w=E[elpcB
Ela<elr % w<w €B ifw=E[elpcZv=E[elpcZ
Ela<elp % w<w €B ifu=ElealpcZv=ElelpcZ
E[le1 = ex]p def vi=va €B ifvi=EJ|ea]peZ,vr=E[e]peZ

Ele #elp <

undefined otherwise

viZvw €B ifvi=Ele]peZ,vv=E[elpecZ

AIRBUS

Denotationa
00000

S[stat] : € —¢&

@ maps an environment before the statement
to an environment after the statement

o partial function due to

@ errors in expressions
o non-termination

o also defined by structural induction

AIRBUS

Denotationa
00000

Rewriting the semantics using total functions on cpos:
o E[expr] : &1L ST,
returns L for an error or if its argument is L
o S[stat] : &L = &1
o S[skip]p = p
o S[lei;e2] & S[ex]oS[er]

det [L if E[e]p=L
o S[X«elp = { p[X — E[e]p] otherwise

S[s1]p ifE[e]p = true

o S[if ethens,else s,]p & { S[s,]p ifE[e]p = false
1 otherwise
o S[whileedos] & IfpF
p if E[e]p = false
where F(f)(p) =< f(S[s]p) ifE[e]p = true

1L otherwise AIRBUS

Denotationa
00000

How do we handle loops?

the semantics of loops must satisfy:
S[while edo s]p =
p if E[e]p = false
S[while edo s(S[s]p) if E[e]p = true
undefined otherwise

this is a recursive definition, we must prove that:
o the equation has solutions
o choose the right one
= we use fixpoints on partially ordered sets
AIRBUS

o

o Link between operational and denotational semantics

AIRBUS

Are the operational and denotational semantics consistent with each other?

Note that:

o systems are actually described operationally

o the denotational semantics is a more abstract representation

(more suitable for some reasoning on the system)

= the denotational semantics must be proven faithful
(in some sense) to the operational model to be of any use

AIRBUS

Big-step semantics: abstraction of traces
only remembers the input-output relations

many variants exist:
o "angelic” semantics, in P(X x X):
def ’ . /
Als] = {(o,0")|3(o0,...,00) Et[s]*:0 =00,0" =0}
(only give information on the terminating behaviors;
can only prove partial correctness)

o natural semantics, in P(X x X,):
N[s] € A[s]u{(s,L)|3(o0,...) € t[s]*:0c =00}

(models the terminating and non-terminating behaviors;
can prove total correctness)

AIRBUS

(e is an isomorphism)

denotational operational
world world
o
S[s] denotational ----------- bigstep A[s]

natural N[s]
traces =~[s]

transition system 7 []
(small step)

e

statement

AIRBUS

A 0
.
. T
S
S acet
L
e
e,
S
N

AIRBUS

Expressions and conditions

expr = V Vevy
| ¢ ceZ
| —expr
| exproexpr oe{+,—,%x,/}
| rand(a, b) a,beZ

cond = expr i< expr e {<, > =,#4,<,>}
| —cond
| cond ¢ cond o€ {A,V}

Statements
stat V <« expr

if cond then stat else stat
while cond do stat

stat; stat

skip

AIRBUS

Classic non-deterministic concrete semantics, in denotational style:

Elexpr] : & — P(Z) (arithmetic expressions)

E[VIp = {p(V)}

Elc]p “{c}
E[rand(a,b)]p € {x|a<x<b}
E[—e]p E{-vlveE[e]p}

Elecelp ={viowv|vcE[elp vocE[elpo#/Vv#0}
C[cond] : € — P({true, false}) (boolean conditions)
Cl-clp “{-v|veClclp)
Clacalpr E{vown|vueClalp veClalp}
Clerxie]p € {true|Ivy € E[er]p, vo € E[e]p:vi i vo } U
{false|3vy € E[er]p, v» €E[ex]p:vitava }
where £ £V 57 AIRBUS

S[stat] : P(E) — P(E)

S[skip]R LR

S[si; s21R ZS[](S[s1]R)

S[V « e]R LV v]peR, veE[e]p}
S[if ¢ then s; else 5,]R <'S[s |(S[c?]R) US[s](S[~c?]R)
S[while c do s|R EIS[-c?](ifp M. RUS[s](S[c?]/))
where

S[c?]R L peR|truecClc]p}

S[stat] is a U—morphism in the complete lattice (P(£),C,U,N,0,E)

AIRBUS

Reminder: we compose two abstractions:
o P(V — Z) is abstracted as V — P(Z) (forget relationship)
o P(Z) is abstracted as intervals 7 (keep only bounds)

AIRBUS

Ef[expr] : &% =T
interval version of E[expr] : &€ — P(Z)

Definition by structural induction, very similar to E[expr |

E4] VX LEXE(V)

Ef[c]X* e,]
Ef[rand(a, b) | X* <'[a, b]

Ef[—e] X* R e] Xt

Efleoe]X! EEe]X? of Effe]X!

AIRBUS

o —[a,b] =[-b,—a

o [a,b] +F [c,d] =[a+c,b+d]

e [avb] —t [Cd] = [a*d:bfc]

oViel -t 1 =1 —i—ﬁi:i—i-ﬂ_L:-":L (strictness)
where: + and — is extended to +00, —00 as:
Vx € Z: (+0) + x = 400, (—00) + x = —00, —(+00) = (—0),...

o [a,b] xF [c,d]=[min(axc,axd, bxc,bxd),

max(ax c,ax d, bx c, bxd)]

where X is extended to +co and —oco by the rule of signs:
¢ X (+00) = (+0) if ¢ >0, (—o0) if c <0
¢ x (=00) = (—00)ifc>0, (+00)ifc <0

we also need the non-standard rule: 0 x (+00) =0 x (—o0) =0

AIRBUS

St skip] X! & X!
S s s] XF L SH s [(SH] s]XF)

SV« e]Xt XAV s Ef[e] X if Ef[e] Xt # L
I B if EE[e]X¢ = 1

SH[if c then s; else 5, [X* % SE[s [(SH[c?[X?) UF SH[s J(SF[~c?] XF)

St[while ¢ do s]X* % SH[~c?](lim AE. 15 7 (XE UF SE[s](SE[c?]1%)))

(next slides: extending the language with assertions and local variables)

AIRBUS

Widening: binary operator v : £f x £ — £ such that:
o Y(XHyUu(YH) Cy(XEv YH) (sound abstraction of U)

o for any sequence (X,g),,eN, the sequence (Y,g),,eN

{ vi X}
def
Yr?—l—l = Y,? v Xrg—i-l

stabilizes in finite time: AN € N: Yyt — Y/g/+1

Fixpoint approximation theorem:

o the sequence X£+1 & XF v FH(X}) stabilizes in finite time
o when X}LH C Xﬁ,, then Xﬁ, abstracts Ifp F

Soundness proof: assume Xt

i1 C XE, then
AXE) 29Xy 1) = v(X§ ¥ FEXE)) 2 v(FHXR)) 2 F(v(XE))

'y(X,:\t,) is a post-fixpoint of F, but Ifp F is F's least post-fixpoint, so, 'y(X,:\t,) DIfpF AIRBUS

Interval widening V:Zx7Z —7T

VieZ: 1Lvi=1v.l=1I
(2,5 ¥ [c, d] def a ifa<c b if b>d
' o —00 fa>c |+o ifb<d

@ an unstable lower bound is put to —oco
@ an unstable upper bound is put to +oo

@ once at —oo or +00, the bound becomes stable

Point-wise lifting: v : & x &8 — &F

XEV YEZ AV e V. XY V)V YEV)

extrapolate each variable independently

—> stabilization in at most 2|V| iterations AIRBUS

Avionics Software Security properties Static analysis

Operational semantics Denotational

o

00O«

AIRBUS

	Avionics Software
	Security properties
	Static analysis
	Abstract interpretation
	Example of abstract interpretation
	False alarms
	Abstraction refinement
	Abstract domains
	Run-time error analysis

	Operational semantics
	Transition systems and small step semantics
	Traces semantics
	Summary

	Denotational semantics
	Deterministic imperative programs
	Link between operational and denotational semantics
	Interval analysis, more formally

