
Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Static analysis of avionics software for security
TLS-SEC

David Delmas

Airbus Avionics Software

11 December 2018

based on slides by c© P. Cousot, A. Miné, and X. Rival
École normale supérieure, New York University, Université P-M Curie

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Airbus Cockpit Avionics Software

Software functions

Aircraft Control Domain (C, asm)

flight control systems DAL A

flight warning systems DAL B or DAL C

communication systems DAL C

Airline Information Services Domain (Java)

administrative functions DAL E

maintenance support DAL E

Software platforms

ATSU LynxOS R©-based POSIX Host Platform x86, DAL C

IMA ARINC 653 Integrated Modular Avionics PowerPC, DAL A

ASF PikeOS R©-based Avionics Server Function PowerPC, DAL C

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Safety standards

Critical avionics software is subject to certification:

regulated by international standards (DO-178 rev. B/C)

verification = more than half of the development cost

mostly based on massive test campaigns & intellectual reviews

Current trend:

use of formal methods now acknowledged (DO-178C, DO-333)

at the binary level, to replace testing

at the source level, to replace intellectual reviews

at the source level, to replace testing
provided the correspondence with the binary is also certified

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Security concerns for aircraft embedded systems
Aircraft functions increasingly performed by software-intensive systems

Airline flight ops & cabin facilities → connectivity

1 to external untrusted networks

2 to avionics maintenance & ground-board communication

Enhanced control automation, HMI comfort,
systems interoperability, configurability

→ exponential complexity increase (SW, HW, networks)

→ harder to ensure freedom from security vulnerabilities

Major trends in avionics

1 more and more generic avionics platforms

2 growing parts developed by third parties

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Security concerns for aircraft embedded systems
Aircraft functions increasingly performed by software-intensive systemsAirline flight ops & cabin facilities → connectivity

1 to external untrusted networks

2 to avionics maintenance & ground-board communication

Navigation Surveillance & Air Traffic functions
(NOT safety-critical)

Controller-Pilot communication (CPDLC)

Surveillance out of radar coverage (ADS)

ACARS/ATN data-link protocols over radio or satellite
(no cryptographic authentication or secrecy)

expected traffic growth

→ automated trajectory modification and negotiation
needed in the near future

→ increased focus on datalink security

Enhanced control automation, HMI comfort,
systems interoperability, configurability

→ exponential complexity increase (SW, HW, networks)

→ harder to ensure freedom from security vulnerabilities

Major trends in avionics

1 more and more generic avionics platforms

2 growing parts developed by third parties

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Security concerns for aircraft embedded systems
Aircraft functions increasingly performed by software-intensive systems

Airline flight ops & cabin facilities → connectivity

1 to external untrusted networks

2 to avionics maintenance & ground-board communication

Enhanced control automation, HMI comfort,
systems interoperability, configurability

→ exponential complexity increase (SW, HW, networks)

→ harder to ensure freedom from security vulnerabilities

Major trends in avionics

1 more and more generic avionics platforms

2 growing parts developed by third parties

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Security concerns for aircraft embedded systems
Aircraft functions increasingly performed by software-intensive systems

Airline flight ops & cabin facilities → connectivity

1 to external untrusted networks

2 to avionics maintenance & ground-board communication

Enhanced control automation, HMI comfort,
systems interoperability, configurability

→ exponential complexity increase (SW, HW, networks)

→ harder to ensure freedom from security vulnerabilities

Major trends in avionics

1 more and more generic avionics platforms

2 growing parts developed by third parties

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Security risks for aircraft embedded systems
Major trends in avionics

More and more generic avionics platforms

→ standard HW & communication protocols

→ Commercial-Off-The-Shelf components

→ likely to be known to unspecialised attackers

Growing parts developed by third parties

→ less grip on processes

→ need for automated security assurance

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Airbus assets to be protected against threats
1 aircraft operational safety

2 aircraft operational & dispatch reliability

3 commercial branding & image (Airbus & Airline)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Increasing security-related regulatory constraints
Federal Register: April 13, 2007
http://www.gpo.gov/fdsys/pkg/FR-2007-04-13/html/E7-7065.htm

FAA emitted special conditions for B787 certification bc
“The architecture of the Boeing Model 787-8 computer systems and networks may allow access to external systems and networks, such as wireless

airline operations and maintenance systems, satellite communications, electronic mail, the internet, etc. Onboard wired and wireless devices may also

have access to parts of the airplane’s digital systems that provide flight critical functions.” “These new connectivity capabilities may result in security

vulnerabilities to the airplane’s critical systems.”

January 2010: similar special conditions for B747-8
http://www.gpo.gov/fdsys/pkg/FR-2010-01-15/html/2010-661.htm

December 2013: similar special conditions for Airbus A350
https://federalregister.gov/a/2013-29985

December 2013: EASA requested all airborne systems with datalink capabilities to be
re-assessed for potential security vulnerabilities related to the processing of
misformatted messages.

http://www.gpo.gov/fdsys/pkg/FR-2007-04-13/html/E7-7065.htm
http://www.gpo.gov/fdsys/pkg/FR-2010-01-15/html/2010-661.htm
https://federalregister.gov/a/2013-29985

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Pending standards for avionics

RTCA Special Committee 216 (SC-216) to
“help ensure safe, secure and efficient operations amid the growing use of highly integrated electronic systems and network technologies used

on-board aircraft, for CNS/ATM systems and air carrier operations and maintenance.”

RTCA SC-216 / EUROCAE WG-72 collaboration
1 Minimum Aviation System Performance Standards (MASPS) for Aeronautical

Electronic and Networked Systems Security
2 Security Assurance and Assessment Processes and Methods for Safety-related

Aircraft Systems
3 ED-202 Airworthiness security process specification
4 ED-203 Airworthiness Security Methodology and Instructions

State-of-the-art techniques should be proposed

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Categories of security properties
Integrity

assets modified only by authorised parties in authorised ways

threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

Confidentiality

assets read only by authorised parties

threats: leakage of sensitive secret information

protections: ciphering, partitioning, information flow control

Availability

assets are accessible to authorised parties in a timely manner

threats: denial of service attacks

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Categories of security properties
Integrity

assets modified only by authorised parties in authorised ways

threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

Confidentiality

assets read only by authorised parties

threats: leakage of sensitive secret information

protections: ciphering, partitioning, information flow control

Availability

assets are accessible to authorised parties in a timely manner

threats: denial of service attacks

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Categories of security properties
Integrity

assets modified only by authorised parties in authorised ways

threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

Confidentiality

assets read only by authorised parties

threats: leakage of sensitive secret information

protections: ciphering, partitioning, information flow control

Availability

assets are accessible to authorised parties in a timely manner

threats: denial of service attacks

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Research directions
Integrity

buffer overflow analyses (synchronous and asynchronous)

information flow analyses (trusted vs tainted)

formal proof of security functionalities

Confidentiality

information flow analyses (public vs secret) (also integrity)

formal verification of cryptographic protocols (also integrity)

quantitative assessment of crypto primitives (also integrity)

Availability

WCET and termination analyses

resource consumption analyses

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Main short-term objective: memory safety
Minimal integrity property

Goal: no run-time error!

no buffer overflow, invalid pointer arithmetic or dereference

no overflows in float, integer, enum arithmetic and cast

no division, modulo by 0 on integers and floats

Means of assurance

certified avionics ⇒ soundness required

internal software ⇒ C source code available

intellectual reviews costly and error-prone ⇒ automation
necessary

⇒ Solution: sound static analysis

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Main short-term objective: memory safety
Minimal integrity property

Goal: no run-time error!

no buffer overflow, invalid pointer arithmetic or dereference

no overflows in float, integer, enum arithmetic and cast

no division, modulo by 0 on integers and floats

Means of assurance

certified avionics ⇒ soundness required

internal software ⇒ C source code available

intellectual reviews costly and error-prone ⇒ automation
necessary

⇒ Solution: sound static analysis

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Example: Sendmail buffer overflow email address parsing
()()()...() Discovered 2003 by Mark Dowd

#define	BUFFERSIZE	200
#define	TRUE	1
#define	FALSE	0
int	copy_it	(char	*	input	,	unsigned	int	length)	{
				char	c	,	localbuf	[BUFFERSIZE];
				unsigned	int	upperlimit,	quotation,	roundquote,	inputIndex,	outputIndex;
				upperlimit	=	BUFFERSIZE	-	10;
				quotation	=	roundquote	=	FALSE	;
				inputIndex	=	outputIndex	=	0;
				while	(inputIndex	<	length)	{
								c	=	input	[inputIndex	++];
								if	((c	==	'<')	&&	(!	quotation))	{
												quotation	=	TRUE	;	upperlimit	--;
								}
								if	((c	==	'>')	&&	(quotation))	{
												quotation	=	FALSE	;	upperlimit	++;
								}
								if	((c	==	'(')	&&	(!	quotation)	&&	!	roundquote)	{
												roundquote	=	TRUE	;	//upperlimit--;	//	decrementation	was	missing
in	bug
								}
								if	((c	==	')')	&&	(!	quotation)	&&	roundquote)	{
												roundquote	=	FALSE	;	upperlimit	++;
								}
								//	If	there	is	sufficient	space	in	the	buffer	,	write	the	character	.
								if	(outputIndex	<	upperlimit)	{
												localbuf	[outputIndex]	=	c;
												outputIndex	++;
								}
				}
				if	(roundquote)	{
								localbuf	[outputIndex]	=	')';	outputIndex	++;	}
				if	(quotation)	{
								localbuf	[outputIndex]	=	'>';	outputIndex	++;	}

				return	0;
}

1

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis
Abstract interpretation
Example of abstract interpretation
False alarms
Abstraction refinement
Abstract domains
Run-time error analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Sound static analysis

Characteristics:

direct analysis of the source code (not a model)

automatic (easy to set up, no interaction with the user)

efficient

approximate (to sidestep decidability and efficiency issues)

Soundness:

semantic-based (C specification, machine integers, floats, pointers, . . .)

full coverage of all control and data

any property found by analysis holds on every program execution
=⇒ no error missed, no false negative

soundness is required by DO

Abstract interpretation: theory of the approximation of semantics

derive sound analysis with controllable cost/precision trade-off

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis
Abstract interpretation
Example of abstract interpretation
False alarms
Abstraction refinement
Abstract domains
Run-time error analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Principle of abstract interpretation

Define the concrete semantics of your system or program

concrete semantics ≡ mathematical model of the set
of all its possible behaviours in all possible environments

can be constructed from semantics of commands

of system specification or programming language

Define a specification

specification ≡ subset of possible behaviours

Conduct a formal proof

that the concrete semantics meets the specification

use computers to automate the proof

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Principle of abstract interpretation

Define the concrete semantics of your system or program

concrete semantics ≡ mathematical model of the set
of all its possible behaviours in all possible environments

can be constructed from semantics of commands

of system specification or programming language

Define a specification

specification ≡ subset of possible behaviours

Conduct a formal proof

that the concrete semantics meets the specification

use computers to automate the proof

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Principle of abstract interpretation

Define the concrete semantics of your system or program

concrete semantics ≡ mathematical model of the set
of all its possible behaviours in all possible environments

can be constructed from semantics of commands

of system specification or programming language

Define a specification

specification ≡ subset of possible behaviours

Conduct a formal proof

that the concrete semantics meets the specification

use computers to automate the proof

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Concrete semantics of system/program P

A very informal introduction
to the principles of
abstract interpretation

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 7 — ľ P. Cousot, 2005

Semantics

The concrete semantics of a program formalizes (is a
mathematical model of) the set of all its possible execu-
tions in all possible execution environments.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 8 — ľ P. Cousot, 2005

Graphic example: Possible behaviors

x(t)

t

���������
	
���	�
���

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 9 — ľ P. Cousot, 2005

Undecidability

– The concrete mathematical semantics of a program is
an “infinite” mathematical object, not computable;
– All non trivial questions on the concrete program se-
mantics are undecidable.
Example: Kurt Gödel argument on termination
– Assume termination(P) would always terminates and
returns true iff P always terminates on all input data;
– The following program yields a contradiction

P ” while termination(P) do skip od.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 10 — ľ P. Cousot, 2005

Semantics[|P|]

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Specification of P (e.g. safety property)

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

!"#$%&'()*"('

+",,%$-')
.#/0'1."#%',

II) Define which specification must be checked

27

Formalize what you are interested to prove about program behaviorsFormalize what you are interested to prove about program behaviors

Specification[|P|]

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Formal proof of P
Graphic example: Safety properties

The safety properties of a program express that no possi-
ble execution in any possible execution environment can
reach an erroneous state.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 11 — ľ P. Cousot, 2005

Graphic example: Safety property

x(t)

t

��
�����������

���������
	
���	�
���

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 12 — ľ P. Cousot, 2005

Safety proofs

– A safety proof consists in proving that the intersection
of the program concrete semantics and the forbidden
zone is empty;
– Undecidable problem (the concrete semantics is not
computable);
– Impossible to provide completely automatic answers
with finite computer resources and neither human in-
teraction nor uncertainty on the answer 2.

2 e.g. probabilistic answer.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 13 — ľ P. Cousot, 2005

Test/debugging

– consists in considering a subset of the possible execu-
tions;
– not a correctness proof;
– absence of coverage is the main problem.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 14 — ľ P. Cousot, 2005

Semantics[|P|] ⊆ Specification[|P|]

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Excluded miracle

Undecidability

The concrete semantics of a system/program is not computable.

⇒ Most questions on system/program behaviour are undecidable.

Example: termination is undecidable

assume termination(P) always terminates and returns
true iff P always terminates on all input data

the following program yields a contradiction

P := while termination(P)do ()done

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Excluded miracle

Undecidability

The concrete semantics of a system/program is not computable.

⇒ Most questions on system/program behaviour are undecidable.

Example: termination is undecidable

assume termination(P) always terminates and returns
true iff P always terminates on all input data

the following program yields a contradiction

P := while termination(P)do ()done

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Test/simulation
Graphic example: Property test/simulation

x(t)

t

���	����������	
���	�
���

��
�����������

���������
	
���	�
���

�

�
����

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 15 — ľ P. Cousot, 2005

Abstract interpretation

– consists in considering an abstract semantics, that is
to say a superset of the concrete semantics of the pro-
gram;
– hence the abstract semantics covers all possible con-
crete cases;
– correct: if the abstract semantics is safe (does not in-
tersect the forbidden zone) then so is the concrete se-
mantics.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 16 — ľ P. Cousot, 2005

Graphic example: Abstract interpretation

x(t)

t

���	
�	�������	���	
���	�
���

��
�����������

���������
	
���	�
���

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 17 — ľ P. Cousot, 2005

Formal methods

Formal methods are abstract interpretations, which dif-
fer in the way to obtain the abstract semantics:
– “model checking”:
- the abstract semantics is given manually by the user;
- in the form of a finitary model of the program exe-
cution;
- can be computed automatically, by techniques rele-
vant to static analysis.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 18 — ľ P. Cousot, 2005

Subset of the possible behaviours ⇒ incomplete

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Abstract semantics for P

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

!"#$%&#'$()&'$

*"++&,-$%
'(./$0'"(&$+

1,+'(.0'&"#%"2%'3$%'(./$0'"(&$+

III) Choose an appropriate abstraction

28

Abstract away all information on program behaviors irrelevant to the proofAbstract away all information on program behaviors irrelevant to the proofAbstract away all information on program behaviors irrelevant to the proofAbstract

Abstraction(Semantics[|P|])

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Proof by abstract interpretation

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

!"##$%&'(
)*+,'-)"*$'#

."*%$//'0(1"0'

2%#)*+-)$"0("3()4'()*+,'-)"*$'#

IV) Mechanically verify in the abstract

29

The proof is fully automatic in finite timeThe proof is fully automatic in finite timeautomatic in finite timeautomatic

Abstraction(Semantics[|P|]) ⊆ Specification[|P|]

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Soundness of abstract interpretation

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2$,.#/1.%"()"3).4').#/0'1."#%',

Soundness of the abstract verification

31

Never forget any possible case so the abstract proof is correct in the concreteNever forget any possible case so the abstract proof is correct in the concrete

Semantics[|P|] ⊆ Abstraction(Semantics[|P|]) ⊆ Specification[|P|]

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Formal methods are abstract interpretations

model-checking user-provided abstract semantics
, finitary model
may be inferred by static analysis

deductive methods user-provided abstract semantics
, inductive invariants
may be inferred by static analysis

static analysis abstract semantics computed automatically
, predefined abstractions
may be tailored by the user

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis
Abstract interpretation
Example of abstract interpretation
False alarms
Abstraction refinement
Abstract domains
Run-time error analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Concrete semantics: set of (discrete) traces

A very informal introduction
to static analysis
algorithms

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 27 — ľ P. Cousot, 2005

Trace semantics

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 28 — ľ P. Cousot, 2005

Trace semantics

– Consider (possibly infinite) traces that is series of states
corresponding to executions described by discrete tran-
sitions;
– The collection of all such traces, starting from the ini-
tial states, is the trace semantics.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 29 — ľ P. Cousot, 2005

Graphic example: Small-steps transition
semantics

x(t)

t

���������
���
�	��

	
���	�
���

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 30 — ľ P. Cousot, 2005

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Collecting semantics

Collect the set of states that can appear on some trace at any given discrete time :

Collecting semantics

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 39 — ľ P. Cousot, 2005

Collecting semantics

– Collect all states that can appear on some trace at any
given discrete time:

 ����
���������

� � � � � � � � � � �������� ����

�

�
�

�
�
�

�

!
�������"
���������

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 40 — ľ P. Cousot, 2005

Collecting abstraction

– This is an abstraction. Does the red trace exists?
Trace semantics: no, collecting semantics: I don’t know.

 ����
���������

� � � � � � � � � � �������� ����

�

�
�

�
�
�

�

!
�������"
���������

#�$��
$������

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 41 — ľ P. Cousot, 2005

Graphic example: collecting semantics

x(t)

t

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 42 — ľ P. Cousot, 2005

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Trace abstraction : collecting abstraction

This an abstraction. Does the red trace exist?
Trace semantics: no 6= collecting semantics: I don’t know.

Collecting semantics

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 39 — ľ P. Cousot, 2005

Collecting semantics

– Collect all states that can appear on some trace at any
given discrete time:

 ����
���������

� � � � � � � � � � �������� ����

�

�
�

�
�
�

�

!
�������"
���������

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 40 — ľ P. Cousot, 2005

Collecting abstraction

– This is an abstraction. Does the red trace exists?
Trace semantics: no, collecting semantics: I don’t know.

 ����
���������

� � � � � � � � � � �������� ����

�

�
�

�
�
�

�

!
�������"
���������

#�$��
$������

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 41 — ľ P. Cousot, 2005

Graphic example: collecting semantics

x(t)

t

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 42 — ľ P. Cousot, 2005

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Set abstraction : intervals

Abstracting sets (i.e. properties)

– Choose an abstract domain, replacing sets of objects
(states, traces, . . .) S by their abstraction ¸(S)
– The abstraction function ¸ maps a set of concrete ob-
jects to its abstract interpretation;
– The inverse concretization function ‚ maps an abstract
set of objects to concrete ones;
– Forget no concrete objects: (abstraction from above)
S „ ‚(¸(S)).

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 48 — ľ P. Cousot, 2005

Interval abstraction ¸

�

�

���

�

��

fx : [1; 99]; y : [2; 77]g

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 49 — ľ P. Cousot, 2005

Interval concretization ‚

�

�

���

�

��

fx : [1; 99]; y : [2; 77]g

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 50 — ľ P. Cousot, 2005

The abstraction ¸ is monotone

�

�

���

�

��

����

��

�	

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X „ Y) ¸(X) v ¸(Y)

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 51 — ľ P. Cousot, 2005

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Set abstraction : intervals

Abstracting sets (i.e. properties)

– Choose an abstract domain, replacing sets of objects
(states, traces, . . .) S by their abstraction ¸(S)
– The abstraction function ¸ maps a set of concrete ob-
jects to its abstract interpretation;
– The inverse concretization function ‚ maps an abstract
set of objects to concrete ones;
– Forget no concrete objects: (abstraction from above)
S „ ‚(¸(S)).

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 48 — ľ P. Cousot, 2005

Interval abstraction ¸

�

�

���

�

��

fx : [1; 99]; y : [2; 77]g

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 49 — ľ P. Cousot, 2005

Interval concretization ‚

�

�

���

�

��

fx : [1; 99]; y : [2; 77]g

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 50 — ľ P. Cousot, 2005

The abstraction ¸ is monotone

�

�

���

�

��

����

��

�	

fx : [33; 89]; y : [48; 61]g
v

fx : [1; 99]; y : [2; 90]g

X „ Y) ¸(X) v ¸(Y)

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 51 — ľ P. Cousot, 2005

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

set of (discrete) traces

A very informal introduction
to static analysis
algorithms

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 27 — ľ P. Cousot, 2005

Trace semantics

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 28 — ľ P. Cousot, 2005

Trace semantics

– Consider (possibly infinite) traces that is series of states
corresponding to executions described by discrete tran-
sitions;
– The collection of all such traces, starting from the ini-
tial states, is the trace semantics.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 29 — ľ P. Cousot, 2005

Graphic example: Small-steps transition
semantics

x(t)

t

���������
���
�	��

	
���	�
���

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 30 — ľ P. Cousot, 2005

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

traces of sets of states

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

trace of sets of states

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

trace of intervals

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

Effective computation : intialisation

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

Effective computation : propagation

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

Effective computation : widening unstable constraints

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

Effective computation : widening unstable constraints

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

From set of traces to set of reachable states

Effective computation : stability of interval constraints

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Program to be analyzed

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Equations (abstract interpretation of the semantics)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Resolution by increasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Convergence speed-up by widening

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Decreasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Decreasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Decreasing iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Final solution

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Result of interval analysis

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval analysis

Formal proof of absence of overflow

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis
Abstract interpretation
Example of abstract interpretation
False alarms
Abstraction refinement
Abstract domains
Run-time error analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Alarms

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#)"#)3/-,')/-/#4)5

6-/#4)777

Incompleteness

36

When abstract proofs may fail while concrete proofs would succeed

By soundness an alarm must be raised for this overapproximation!

When abstract proofs may fail while concrete proofs would succeed

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

True error

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

!"#$%&&'()*"('

+",,%$-')
.#/0'1."#%',

2##"#

3-/#4)555

True error

37

The abstract alarm may correspond to a concrete errorThe abstract alarm may correspond to a concrete error

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Incompleteness ⇒ false alarms

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

!"#$%&&'())*"('

+",,%$-')
.#/0'1."#%',

!/-,')/-/#2

3-/#2)444

False alarm

38

The abstract alarm may correspond to no concrete error (false negative)The abstract alarm may correspond to no concrete error (false negative)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

False alarms (e.g. interval analysis)

Graphic example: Imprecision) false alarms

x(t)

t

���
�����	
���	�
�����	
�	���

��
�����������

���������
	
���	�
���

���������
�

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 23 — ľ P. Cousot, 2005

Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . .);

– can be parametrized to allow for manual adaptation
to the application domains.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 24 — ľ P. Cousot, 2005

Graphic example: Standard abstraction
by intervals

x(t)

t

���
�����	
���	�
�����	
�	���������	�
����

��
�����������

���������
	
���	�
���

���������
��

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 25 — ľ P. Cousot, 2005

Graphic example: A more refined abstraction

x(t)

t

���������	������	�
����

��
�����������

���������
	
���	�
���

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 26 — ľ P. Cousot, 2005
⇒ need for abstraction refinement

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis
Abstract interpretation
Example of abstract interpretation
False alarms
Abstraction refinement
Abstract domains
Run-time error analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Set of functions

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Set of functions abstraction

89

t

fi(t)

i=0
i=1
i=2

i=3

i=4

How to approximate { f1, f2, f3, f4 } ?How to approximate {f1, f2, f3, f4}?

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Abstraction of set of functions

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

t

f(t)

Set of functions abstraction

90

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A less precise abstraction

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Set of functions abstraction

9

t

fi(t)

i=0
i=1
i=2

i=3

i=4

How to approximate { f1, f2, f3, f4 } ?

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

t

f(t)

Set of functions abstraction

10

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A less precise abstraction

11

t

f(t)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Concrete questions answered in the abstract

12

t

f(t)

M

m

on the fi

∃ i, t ∈ [l, h]: fi(t) < m ? No

∃ i, t ∈ [l,h] : fi(t) > M ?

l h

Min/max questions on the fi

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Concrete questions on the fi

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot 91

t

f(t)

M

m
∃ i, t ∈ [l, h]: fi(t) < m ? No

∃ i, t ∈ [l,h] : fi(t) > M ?

l h

Min/max questions on the fi

Concrete questions on the fi answered in the abstract

Min/max questions on the fi

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Concrete questions answered in the abstract

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Concrete questions on the fi answered in the abstract

92

t

f(t)

M

∃ i, t ∈ [l,h] : fi(t) < m ? No
m

∃ i, t ∈ [l,h]: fi(t) > M ? I don’t know

Min/max questions on the fi

l h

Min/max questions on the fi

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Soundness of the abstraction

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Concrete questions answered in the abstract

13

t

f(t)

M

∃ i, t ∈ [l,h] : fi(t) < m ? No
m

∃ i, t ∈ [l,h]: fi(t) > M ? I don’t know

Min/max questions on the fi

l h

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• No concrete case is ever forgotten:

Soundness of the abstraction

14

t

f(t)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A more precise/refined abstraction

15

t

f(t)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

An even more precise/refined abstraction

16

t

f(t)

No concrete case is ever forgotten.

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A more precise/refined abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

A more precise/refined abstraction

93

t

f(t)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A even more precise/refined abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

An even more precise/refined abstraction

94

t

f(t)

Note: this is already much more elaborate than CEGAR that goes
counter-example by counter-example!

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Passing to the limit

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

Intelligent passing to the limit

95

t

f(t)

Sound and complete abstraction for min/max questions on
the fi

Sound and complete abstraction for min/max questions on the fi

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A non-comparable abstraction

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

A non-comparable abstraction

96 11

t

f(t)

Sound and incomplete abstraction for min/max questions on
the fi

Sound and incomplete abstraction for min/max questions on the fi

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

The hierarchy of abstractions

SCS Distinguished Lecture Series, CMU, Pittsburgh, April 12th, 2012. © P Cousot

The hierarchy of abstractions

97
Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis
Abstract interpretation
Example of abstract interpretation
False alarms
Abstraction refinement
Abstract domains
Run-time error analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

False alarms (e.g. interval analysis)

Graphic example: Imprecision) false alarms

x(t)

t

���
�����	
���	�
�����	
�	���

��
�����������

���������
	
���	�
���

���������
�

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 23 — ľ P. Cousot, 2005

Abstract domains

Standard abstractions
– that serve as a basis for the design of static analyzers:
- abstract program data,
- abstract program basic operations;
- abstract program control (iteration, procedure, con-
currency, . . .);

– can be parametrized to allow for manual adaptation
to the application domains.

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 24 — ľ P. Cousot, 2005

Graphic example: Standard abstraction
by intervals

x(t)

t

���
�����	
���	�
�����	
�	���������	�
����

��
�����������

���������
	
���	�
���

���������
��

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 25 — ľ P. Cousot, 2005

Graphic example: A more refined abstraction

x(t)

t

���������	������	�
����

��
�����������

���������
	
���	�
���

Course 16.399: “Abstract interpretation”, Thursday, February 10, 2005 — 26 — ľ P. Cousot, 2005
⇒ need for abstraction refinement

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Examples of numerical abstract domains

x

y

x

y

x

y

intervals congruences polyhedra
x , y ∈ [a, b] x , y ∈ aZ + b

∧∑
i ai xi ≤ b

x

y

x

y

t

y

octagons ellipsoids geometric deviations∧
±x ± y ≤ c x2 + by 2 − axy ≤ d |y | ≤ a(1 + b)kt

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Semantics

(In)finite sets of (in)finite traces

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Invariant abstraction: set of reachable states

Set of points (xi , yi), Hoare logic

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Sign abstraction

x ≥ 0, y ≥ 0

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Interval abstraction

a ≤ x ≤ b, c ≤ y ≤ d

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Octagon abstraction

±x ± y ≤ b

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Polyhedral abstraction

a · x + b · y ≤ c

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Ellipsoidal abstraction

(x − a)2 + (y − b)2 ≤ c

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Combinations of abstractions

Exponential abstraction

ax ≤ y

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis
Abstract interpretation
Example of abstract interpretation
False alarms
Abstraction refinement
Abstract domains
Run-time error analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Static analysis of synchronous C programs
Concrete semantics and specification

Concrete semantics source

C99 standard (portable C programs)

IEEE 754-1985 standard (floating-point arithmetic)

architecture parameters (sizeof, endianess, struct, etc.)

compiler and linker parameters (initialization, etc.)

Run-time errors

overflows in float, integer, enum arithmetic and cast

division, modulo by 0 on integers and floats

invalid pointer arithmetic or dereferencing

violation of user-specified assertions

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Static analysis of synchronous C programs
Concrete semantics and specification

Concrete semantics source

C99 standard (portable C programs)

IEEE 754-1985 standard (floating-point arithmetic)

architecture parameters (sizeof, endianess, struct, etc.)

compiler and linker parameters (initialization, etc.)

Run-time errors

overflows in float, integer, enum arithmetic and cast

division, modulo by 0 on integers and floats

invalid pointer arithmetic or dereferencing

violation of user-specified assertions

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Some of ASTRÉE’s numerical abstract domains
c© A. Miné

x

y

x

y

intervals congruences
x , y ∈ [a, b] x , y ∈ aZ + b

x

y

x

y

t

y

octagons ellipsoids geometric deviations∧
±x ± y ≤ c x2 + by 2 − axy ≤ d |y | ≤ a(1 + b)kt

relational domains are necessary to infer precise bounds

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

The ASTRÉE static analyser
Analyseur Statique de logiciels Temps-RÉel Embarqués

A static analyzer for C programs

developed by CNRS/ENS (from 2002) and AbsInt GmbH

commercialised by AbsInt since 2010

Characteristics

1 sound and automatic, scales up to very large programs

2 specialised for control-command programs ⇒ few false alarms

3 parametric ⇒ fine-tuning by end-users

Deployment at Airbus

from 2012 A380/A400M/A350 fly-by-wire control software (DAL A)

successful proofs of absence of run-time error
' 6 hours for 700,000 lines of C

from 2016 all new software products (on-going effort)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

The ASTRÉE static analyser
Analyseur Statique de logiciels Temps-RÉel Embarqués

A static analyzer for C programs

developed by CNRS/ENS (from 2002) and AbsInt GmbH

commercialised by AbsInt since 2010

Characteristics

1 sound and automatic, scales up to very large programs

2 specialised for control-command programs ⇒ few false alarms

3 parametric ⇒ fine-tuning by end-users

Deployment at Airbus

from 2012 A380/A400M/A350 fly-by-wire control software (DAL A)

successful proofs of absence of run-time error
' 6 hours for 700,000 lines of C

from 2016 all new software products (on-going effort)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

The ASTRÉE static analyser
Analyseur Statique de logiciels Temps-RÉel Embarqués

A static analyzer for C programs

developed by CNRS/ENS (from 2002) and AbsInt GmbH

commercialised by AbsInt since 2010

Characteristics

1 sound and automatic, scales up to very large programs

2 specialised for control-command programs ⇒ few false alarms

3 parametric ⇒ fine-tuning by end-users

Deployment at Airbus

from 2012 A380/A400M/A350 fly-by-wire control software (DAL A)

successful proofs of absence of run-time error
' 6 hours for 700,000 lines of C

from 2016 all new software products (on-going effort)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Back to Sendmail buffer overflow email address parsing
()()()...() true alarms detected

#define	BUFFERSIZE	200
#define	TRUE	1
#define	FALSE	0
int	copy_it	(char	*	input	,	unsigned	int	length)	{
				char	c	,	localbuf	[BUFFERSIZE];
				unsigned	int	upperlimit,	quotation,	roundquote,	inputIndex,	outputIndex;
				upperlimit	=	BUFFERSIZE	-	10;
				quotation	=	roundquote	=	FALSE	;
				inputIndex	=	outputIndex	=	0;
				while	(inputIndex	<	length)	{
								c	=	input	[inputIndex	++];
								if	((c	==	'<')	&&	(!	quotation))	{
												quotation	=	TRUE	;	upperlimit	--;
								}
								if	((c	==	'>')	&&	(quotation))	{
												quotation	=	FALSE	;	upperlimit	++;
								}
								if	((c	==	'(')	&&	(!	quotation)	&&	!	roundquote)	{
												roundquote	=	TRUE	;	//upperlimit--;	//	decrementation	was	missing
in	bug
								}
								if	((c	==	')')	&&	(!	quotation)	&&	roundquote)	{
												roundquote	=	FALSE	;	upperlimit	++;
								}
								//	If	there	is	sufficient	space	in	the	buffer	,	write	the	character	.
								if	(outputIndex	<	upperlimit)	{
												localbuf	[outputIndex]	=	c;
												outputIndex	++;
								}
				}
				if	(roundquote)	{
								localbuf	[outputIndex]	=	')';	outputIndex	++;	}
				if	(quotation)	{
								localbuf	[outputIndex]	=	'>';	outputIndex	++;	}

				return	0;
}

1

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Back to Sendmail buffer overflow email address parsing
fixed but false alarms still

#define	BUFFERSIZE	200
#define	TRUE	1
#define	FALSE	0
int	copy_it	(char	*	input	,	unsigned	int	length)	{
				char	c	,	localbuf	[BUFFERSIZE];
				unsigned	int	upperlimit,	quotation,	roundquote,	inputIndex,	outputIndex;
				upperlimit	=	BUFFERSIZE	-	10;
				quotation	=	roundquote	=	FALSE	;
				inputIndex	=	outputIndex	=	0;
				while	(inputIndex	<	length)	{
								c	=	input	[inputIndex	++];
								if	((c	==	'<')	&&	(!	quotation))	{
												quotation	=	TRUE	;	upperlimit	--;
								}
								if	((c	==	'>')	&&	(quotation))	{
												quotation	=	FALSE	;	upperlimit	++;
								}
								if	((c	==	'(')	&&	(!	quotation)	&&	!	roundquote)	{
												roundquote	=	TRUE	;	upperlimit--;	//	decrementation	was	missing	in
bug
								}
								if	((c	==	')')	&&	(!	quotation)	&&	roundquote)	{
												roundquote	=	FALSE	;	upperlimit	++;
								}
								//	If	there	is	sufficient	space	in	the	buffer	,	write	the	character	.
								if	(outputIndex	<	upperlimit)	{
												localbuf	[outputIndex]	=	c;
												outputIndex	++;
								}
				}
				if	(roundquote)	{
								localbuf	[outputIndex]	=	')';	outputIndex	++;	}
				if	(quotation)	{
								localbuf	[outputIndex]	=	'>';	outputIndex	++;	}

				return	0;
}

1

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Back to Sendmail buffer overflow email address parsing
fixed and tuned zero alarm

#define	BUFFERSIZE	200
#define	TRUE	1
#define	FALSE	0
int	copy_it	(char	*	input	,	unsigned	int	length)	{
				char	c	,	localbuf	[BUFFERSIZE];
				unsigned	int	upperlimit,	quotation,	roundquote,	inputIndex,	outputIndex;
__ASTREE_boolean_pack((upperlimit,	inputIndex,	outputIndex	;	quotation,
roundquote));
				upperlimit	=	BUFFERSIZE	-	10;
				quotation	=	roundquote	=	FALSE	;
				inputIndex	=	outputIndex	=	0;
				while	(inputIndex	<	length)	{
								c	=	input	[inputIndex	++];
								if	((c	==	'<')	&&	(!	quotation))	{
												quotation	=	TRUE	;	upperlimit	--;
								}
								if	((c	==	'>')	&&	(quotation))	{
												quotation	=	FALSE	;	upperlimit	++;
								}
								if	((c	==	'(')	&&	(!	quotation)	&&	!	roundquote)	{
												roundquote	=	TRUE	;	upperlimit--;	//	decrementation	was	missing	in
bug
								}
								if	((c	==	')')	&&	(!	quotation)	&&	roundquote)	{
												roundquote	=	FALSE	;	upperlimit	++;
								}
								//	If	there	is	sufficient	space	in	the	buffer	,	write	the	character	.
								if	(outputIndex	<	upperlimit)	{
												localbuf	[outputIndex]	=	c;
												outputIndex	++;
								}
__ASTREE_assert((outputIndex	<=	BUFFERSIZE-10));
				}
				if	(roundquote)	{
								localbuf	[outputIndex]	=	')';	outputIndex	++;	}
				if	(quotation)	{
								localbuf	[outputIndex]	=	'>';	outputIndex	++;	}

				return	0;
}

1

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Static analysis of parallel C programs
Concrete semantics and specification

Model: real-time operating system

fixed set of concurrent threads on a single processor

shared memory (implicit communications)

synchronisation primitives (fixed set of mutexes)

real-time scheduling with fixed priorities (priority-based)

e.g. A380/A400M/A350 IMA, A350 ASF, SA/LR ATSU

mono-threaded startup 6= multi-threaded run (restriction)

Run-time errors

classic C run-time errors (overflows, invalid pointers, etc.)

unprotected data-races (report & factor in the analysis)

incorrect system calls, deadlocks

but NOT livelocks, priority inversions

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Static analysis of parallel C programs
Concrete semantics and specification

Model: real-time operating system

fixed set of concurrent threads on a single processor

shared memory (implicit communications)

synchronisation primitives (fixed set of mutexes)

real-time scheduling with fixed priorities (priority-based)

e.g. A380/A400M/A350 IMA, A350 ASF, SA/LR ATSU

mono-threaded startup 6= multi-threaded run (restriction)

Run-time errors

classic C run-time errors (overflows, invalid pointers, etc.)

unprotected data-races (report & factor in the analysis)

incorrect system calls, deadlocks

but NOT livelocks, priority inversions

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

The ASTRÉEA prototype static analyser

An extension of ASTRÉE

Analyseur Statique de logiciels Temps-RÉel Embarqués
Asynchrones

developed by CNRS/ENS/INRIA since 2009

13/10/2015 1st official merge with AbsInt’s commercial ASTRÉE

results with Airbus

static analysis of A380 FWS

15 processes
' 2 million lines of C

nested loops, complex data structures

' 900 alarms

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

The ASTRÉEA prototype static analyser

An extension of ASTRÉE

Analyseur Statique de logiciels Temps-RÉel Embarqués
Asynchrones

developed by CNRS/ENS/INRIA since 2009

13/10/2015 1st official merge with AbsInt’s commercial ASTRÉE

results with Airbus

static analysis of A380 FWS

15 processes
' 2 million lines of C

nested loops, complex data structures

' 900 alarms

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Schéma producteur(s)-consommateur(s)
partageant un tampon circulaire au moyen de moniteurs POSIX

producteur consommateur

produire ressource v
lock(m); lock(m);
while (i + 1 ≡N j) do wait(c,m); while (i = j) do wait(c ′,m);
b[i]← v ; w ← b[j];
i ← i ⊕N 1; j ← j ⊕N 1;
signal(c ′); unlock(m);
unlock(m) signal(c);

consommer ressource w

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Schéma producteur(s)-consommateur(s)
erratum : signal hors section critique

producteur consommateur

produire ressource v
lock(m); lock(m);
while (i + 1 ≡N j) do wait(c,m); while (i = j) do wait(c ′,m);
b[i]← v ; w ← b[j];
i ← i ⊕N 1; j ← j ⊕N 1;
signal(c ′); unlock(m);
unlock(m) signal(c); WARN: mutex unlocked

consommer ressource w

WARNS: data-races (dans le modèle)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Schéma producteur(s)-consommateur(s)
partageant un tampon circulaire au moyen de moniteurs POSIX

producteur consommateur

produire ressource v
lock(m); lock(m);
while (i + 1 ≡N j) do wait(c,m); while (i = j) do wait(c ′,m);
b[i]← v ; w ← b[j];
i ← i ⊕N 1; j ← j ⊕N 1;
signal(c ′); signal(c);
unlock(m) unlock(m);

consommer ressource w

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Schéma producteur(s)-consommateur(s)
erratum: incrémentation simple

producteur consommateur

produire ressource v
lock(m); lock(m);
while (i + 1 ≡N j) do wait(c,m); while (i = j) do wait(c ′,m);
b[i]← v ; WARN: array out of bounds w ← b[j];
i ← i+1; WARN: integer overflow j ← j ⊕N 1;
signal(c ′); signal(c);
unlock(m) unlock(m);

consommer ressource w

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Schéma producteur(s)-consommateur(s)
erratum : verrou non pris

producteur consommateur

produire ressource v
lock(m); lock(m);
while (i + 1 ≡N j) do wait(c,m); while (i = j) do wait(c ′,m);

WARN: mutex not owned
b[i]← v ; w ← b[j];
i ← i ⊕N 1; j ← j ⊕N 1;
signal(c ′); signal(c); WARN: mutex unlocked
unlock(m) unlock(m);

consommer ressource w

WARNS: data-races

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Schéma producteur(s)-consommateur(s)
erratum : mauvais mutex

producteur consommateur

produire ressource v
lock(m); lock(m′);
while (i + 1 ≡N j) do wait(c,m); while (i = j) do wait(c ′,m′);
b[i]← v ; w ← b[j];
i ← i ⊕N 1; j ← j ⊕N 1;
signal(c ′); WARN: mutex unlocked signal(c); WARN: mutex unlocked
unlock(m) unlock(m′);

consommer ressource w

WARNS: data-races

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Transition systems and small step semantics
Traces semantics

Definitions
Finite traces semantics
Fixpoint definition

Summary

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Operational semantics

Operational semantics

Mathematical description of the execution of programs

1 a model of programs: transition systems
definition, a small step semantics
example: a simple imperative language

2 trace semantics: a families of big step semantics

finite and infinite executions
fixpoint-based definitions

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Transition systems and small step semantics
Traces semantics

Definitions
Finite traces semantics
Fixpoint definition

Summary

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Definition

We will characterize a program by:

states: photography of the program status at an instant of the execution

execution steps: how do we move from one state to the next one

Definition: transition systems (TS)

A transition system is a tuple (S,→) where:

S is the set of states of the system

→⊆ P(S× S) is the transition relation of the system

Note:

the set of states may be infinite

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset
of C):

variables X: finite, predefined set of variables

labels L: before and after each statement

values V: Vint ∪ Vfloat ∪ . . .

Syntax

e ::= v ∈ Vint ∪ Vfloat ∪ . . . | e + e | e ∗ e | . . . expressions
c ::= TRUE | FALSE | e < e | e = e conditions
i ::= x := e; assignment
| if(c) b else b condition
| while(c) b loop

b ::= {i; . . . ; i; } block, program(P)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: states

A non-error state should fully describe the configuration at one instant of the
program execution:

the memory state defines the current contents of the memory

m ∈M = X −→ V
the control state defines where the program currently is

analoguous to the program counter
can be defined by adding labels L = {l0, l1, . . .} between each pair of consecutive
statements; then:

S = L×M] {Ω}

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: semantics of expressions

The semantics JeK of expression e should evaluate each expression into a value,
given a memory state

Evaluation errors may occur: division by zero...
error value is also noted Ω

Thus: JeK : M −→ V] {Ω}

Definition, by induction over the syntax:

JvK(m) = v
JxK(m) = m(x)

Je0 + e1K(m) = Je0K(m)+Je1K(m)

Je0/e1K(m) =

{
Ω if Je1K(m) = 0
Je0K(m)/Je1K(m) otherwise

where ⊕ is the machine implementation of operator ⊕, and is Ω-strict, i.e.,
∀v ∈ V, v⊕Ω = Ω⊕v = Ω.

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: semantics of conditions

The semantics JcK of condition c should return a boolean value

It follows a similar definition to that of the semantics of expressions:
JcK : M −→ Vbool] {Ω}

Definition, by induction over the syntax:

JTRUEK(m) = TRUE

JFALSEK(m) = FALSE

Je0 < e1K(m) =

TRUE if Je0K(m) < Je1K(m)
FALSE if Je0K(m) ≥ Je1K(m)
Ω if Je0K(m) = Ω or Je1K(m) = Ω

Je0 = e1K(m) =

TRUE if Je0K(m) = Je1K(m)
FALSE if Je0K(m) 6= Je1K(m)
Ω if Je0K(m) = Ω or Je1K(m) = Ω

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: transitions

We now consider the transition induced by each statement.

Case of assignment l0 : x = e; l1
if JeK(m) 6= Ω, then (l0,m)→ (l1,m[x ← JeK(m)])

if JeK(m) = Ω, then (l0,m)→ Ω

Case of condition l0 : if(c){l1 : bt l2} else{l3 : bf l4} l5
if JcK(m) = TRUE, then (l0,m)→ (l1,m)

if JcK(m) = FALSE, then (l0,m)→ (l3,m)

if JcK(m) = Ω, then (l0,m)→ Ω

(l2,m)→ (l5,m)

(l4,m)→ (l5,m)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: transitions

Case of loop l0 : while(c){l1 : bt l2} l3

if JcK(m) = TRUE, then

{
(l0,m)→ (l1,m)
(l2,m)→ (l1,m)

if JcK(m) = FALSE, then

{
(l0,m)→ (l3,m)
(l2,m)→ (l3,m)

if JcK(m) = Ω, then

{
(l0,m)→ Ω
(l2,m)→ Ω

Case of {l0 : i0; l1 : . . . ; ln−1in−1; ln}

the transition relation is defined by the individual instructions

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Extending the language with non-determinism

The language we have considered so far is a bit limited:

it is deterministic: at most one transition possible from any state

it does not support the input of values

Changes if we model non deterministic inputs...

... with an input instruction:

i ::= . . . | x := input()

l0 : x := input(); l1 generates transitions

∀v ∈ V, (l0,m)→ (l1,m[x ← v])

one instruction induces non determinism

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Semantics of real world programming languages

C language:

several norms: ANSI C’99, ANSI C’11, K&R...

not fully specified:

undefined behavior
implementation dependent behavior: architecture (ABI) or implementation
(compiler...)
unspecified parts: leave room for implementation of compilers and optimizations

formalizations in HOL (C’99), in Coq (CompCert C compiler)

OCaml language:

more formal...

... but still with some unspecified parts, e.g., execution order

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Transition systems and small step semantics
Traces semantics

Definitions
Finite traces semantics
Fixpoint definition

Summary

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Execution traces

So far, we considered only states and atomic transitions

We now consider program executions as a whole

Definition: traces

A finite trace is a finite sequence of states s0, . . . , sn, noted 〈s0, . . . , sn〉
An infinite trace is an infinite sequence of states 〈s0, . . .〉

Besides, we write:

S? for the set of finite traces

Sω for the set of infinite traces

S∝ = S? ∪ Sω for the set of finite or infinite traces

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Semantics of finite traces

We consider a transition system S = (S,→)

Definition

The finite traces semantics JSK? is defined by:

JSK? = {〈s0, . . . , sn〉 ∈ S? | ∀i , si → si+1}

Example:

contrived transition system S = ({a, b, c, d}, {(a, b), (b, a), (b, c)})
finite traces semantics:

JSK? = { 〈a, b, . . . , a, b, a〉, 〈b, a, . . . , a, b, a〉,
〈a, b, . . . , a, b, a, b〉, 〈b, a, . . . , a, b, a, b〉,
〈a, b, . . . , a, b, a, b, c〉, 〈b, a, . . . , a, b, a, b, c〉
〈c〉, 〈d〉 }

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Example: imperative program

Similarly, we can write the traces of a simple imperative program:

l0 : x := 1;
l1 : y := 0;
l2 : while(x < 4){
l3 : y := y + x;
l4 : x := x + 1;
l5 : }
l6 : (final program point)

τ = 〈 (l0, Lx = x0, y = y0M), (l1, Lx = 1, y = y0M),
(l2, Lx = 1, y = 0M), (l3, Lx = 1, y = 0M),
(l4, Lx = 1, y = 1M), (l5, Lx = 2, y = 1M),
(l3, Lx = 2, y = 1M), (l4, Lx = 2, y = 3M),
(l5, Lx = 3, y = 3M), (l3, Lx = 3, y = 3M),
(l4, Lx = 3, y = 6M), (l5, Lx = 4, y = 6M),
(l6, Lx = 4, y = 6M) 〉

very precise description of what the program does...

... but quite cumbersome

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Trace semantics fixpoint form

We define a semantic function, that computes the traces of length i + 1 from the
traces of length i (where i ≥ 1):

Finite traces semantics as a fixpoint

Let I = {ε}] {〈s〉 | s ∈ S}.
Let F? be the function defined by:

F? : P(S?) −→ P(S?)
X 7−→ X ∪ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ X ∧ sn → sn+1}

Then, F? is continuous and thus has a least-fixpoint greater than I; moreover:

lfpI F? = JSK? =
⋃

n∈N F n
? (I)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Trace semantics fixpoint form: example

Example, with the same simple transition system S = (S,→):

S = {a, b, c, d}
→ is defined by a→ b, b → a and b → c

Then, the first iterates are:

F 0
? (I) = {ε, 〈a〉, 〈b〉, 〈c〉, 〈d〉}

F 1
? (I) = F 0

? (I) ∪ {〈b, a〉, 〈a, b〉, 〈b, c〉}
F 2
? (I) = F 1

? (I) ∪ {〈a, b, a〉, 〈b, a, b〉, 〈a, b, c〉}
F 3
? (I) = F 2

? (I) ∪ {〈b, a, b, a〉, 〈a, b, a, b〉, 〈b, a, b, c〉}
F 4
? (I) = F 3

? (I) ∪ {〈a, b, a, b, a〉, 〈b, a, b, a, b〉, 〈a, b, a, b, c〉}
F 5
? (I) = . . .

the traces of JSK? of length n + 1 appear in F n
? (I)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Transition systems and small step semantics
Traces semantics

Definitions
Finite traces semantics
Fixpoint definition

Summary

5 Denotational semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Summary

We have discussed:

small-step / structural operational semantics: individual program steps

big-step / natural semantics: program executions as sequences of transitions

their fixpoint definitions and properties

Next:

another family of semantics, more compact and compositional

semantic program and proof methods

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics
Deterministic imperative programs
Link between operational and denotational semantics
Interval analysis, more formally

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Introduction
Operational semantics

Defined as small execution steps (transition relation)

over low-level internal configurations (states)

Transitions are chained to define (maximal) traces
possibly abstracted as input-output relations (big-step)

Denotational semantics

Direct functions from programs to mathematical objects (denotations)

by induction on the program syntax (compositional)

ignoring intermediate steps and execution details (no state)

=⇒ Higher-level, more abstract, more modular.
Tries to decouple a program meaning from its execution.
Focus on the mathematical structures that represent programs.
(founded by Strachey and Scott in the 70s: [Scott-Strachey71])

“Assembly” of semantics vs. “Functional programming” of semantics

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Denotation worlds

imperative programs

effect of a program: mutate a memory state
natural denotation: input/output function
D ' memory → memory

challenge: build a whole program denotation
from denotations of atomic language constructs (modularity)

=⇒ very rich theory of mathematical structures
(Scott domains, cartesian closed categories, coherent spaces, event structures,
game semantics, etc. We will not present them in this overview!)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics
Deterministic imperative programs
Link between operational and denotational semantics
Interval analysis, more formally

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: IMP

IMP expressions

expr ::= X (variable)

| c (constant)

| � expr (unary operation)

| expr � expr (binary operation)

variables in a fixed set X ∈ V
constants I def

= B ∪ Z:
booleans B def

= { true, false }
integers Z

operations �:
integer operations: +, −, ×, /, <, ≤
boolean operations: ¬, ∧, ∨
polymorphic operations: =, 6=

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

A simple imperative language: IMP

Statements

stat ::= skip (do nothing)

| X ← expr (assignment)

| stat; stat (sequence)

| if expr then stat else stat (conditional)

| while expr do stat (loop)

(inspired from the presentation in [Benton96])

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Expression semantics

EJ expr K : E ⇀ I

environments E def
= V → I map variables in V to values in I

EJ expr K returns a value in I
⇀ denotes partial functions (as opposed to →)

necessary because some operations are undefined
1 + true, 1 ∧ 2 (type mismatch)

3/0 (invalid value)

defined by structural induction on abstract syntax trees
(next slide)

(when we use the notation XJ y K, y is a syntactic object; X serves to distinguish between different semantic
functions with different signatures, often varying with the kind of syntactic object y (expression, statement,
etc.);
XJ y Kz is the application of the function XJ y K to the object z)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Expression semantics

EJ expr K : E ⇀ I

EJ c Kρ def
= c ∈ I

EJ V Kρ def
= ρ(V) ∈ I

EJ−e Kρ def
= −v ∈ Z if v = EJ e Kρ ∈ Z

EJ¬e Kρ def
= ¬v ∈ B if v = EJ e Kρ ∈ B

EJ e1 + e2 Kρ def
= v1 + v2 ∈ Z if v1 = EJ e1 Kρ ∈ Z, v2 = EJ e2 Kρ ∈ Z

EJ e1 − e2 Kρ def
= v1 − v2 ∈ Z if v1 = EJ e1 Kρ ∈ Z, v2 = EJ e2 Kρ ∈ Z

EJ e1 × e2 Kρ def
= v1 × v2 ∈ Z if v1 = EJ e1 Kρ ∈ Z, v2 = EJ e2 Kρ ∈ Z

EJ e1/e2 Kρ def
= v1/v2 ∈ Z if v1 = EJ e1 Kρ ∈ Z, v2 = EJ e2 Kρ ∈ Z \ {0}

EJ e1 ∧ e2 Kρ def
= v1 ∧ v2 ∈ B if v1 = EJ e1 Kρ ∈ B, v2 = EJ e2 Kρ ∈ B

EJ e1 ∨ e2 Kρ def
= v1 ∨ v2 ∈ B if v1 = EJ e1 Kρ ∈ B, v2 = EJ e2 Kρ ∈ B

EJ e1 < e2 Kρ def
= v1 < v2 ∈ B if v1 = EJ e1 Kρ ∈ Z, v2 = EJ e2 Kρ ∈ Z

EJ e1 ≤ e2 Kρ def
= v1 ≤ v2 ∈ B if v1 = EJ e1 Kρ ∈ Z, v2 = EJ e2 Kρ ∈ Z

EJ e1 = e2 Kρ def
= v1 = v2 ∈ B if v1 = EJ e1 Kρ ∈ I, v2 = EJ e2 Kρ ∈ I

EJ e1 6= e2 Kρ def
= v1 6= v2 ∈ B if v1 = EJ e1 Kρ ∈ I, v2 = EJ e2 Kρ ∈ I

undefined otherwise

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Statement semantics

SJ stat K : E ⇀ E

maps an environment before the statement
to an environment after the statement

partial function due to

errors in expressions
non-termination

also defined by structural induction

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Summary

Rewriting the semantics using total functions on cpos:

EJ expr K : E⊥
c→ I⊥

returns ⊥ for an error or if its argument is ⊥
SJ stat K : E⊥

c→ E⊥
SJ skip Kρ def

= ρ

SJ e1; e2 K def
= SJ e2 K ◦ SJ e1 K

SJ X ← e Kρ def
=

{
⊥ if EJ e Kρ = ⊥
ρ[X 7→ EJ e Kρ] otherwise

SJ if e then s1 else s2 Kρ def
=

SJ s1 Kρ if EJ e Kρ = true
SJ s2 Kρ if EJ e Kρ = false
⊥ otherwise

SJ while e do s K def
= lfp F

where F (f)(ρ) =

ρ if EJ e Kρ = false
f (SJ s Kρ) if EJ e Kρ = true
⊥ otherwise

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Statement semantics: loops

How do we handle loops?

the semantics of loops must satisfy:

SJ while e do s Kρ =

ρ if EJ e Kρ = false
SJ while e do s K(SJ s Kρ) if EJ e Kρ = true
undefined otherwise

this is a recursive definition, we must prove that:

the equation has solutions

choose the right one

=⇒ we use fixpoints on partially ordered sets

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics
Deterministic imperative programs
Link between operational and denotational semantics
Interval analysis, more formally

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Motivation

Are the operational and denotational semantics consistent with each other?

Note that:

systems are actually described operationally

the denotational semantics is a more abstract representation
(more suitable for some reasoning on the system)

=⇒ the denotational semantics must be proven faithful
(in some sense) to the operational model to be of any use

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Reminder: from traces to big-step semantics

Big-step semantics: abstraction of traces
only remembers the input-output relations

many variants exist:

“angelic” semantics, in P(Σ× Σ):

AJ s K def
= { (σ, σ′) | ∃(σ0, . . . , σn) ∈ tJ s K∗:σ = σ0, σ

′ = σn }
(only give information on the terminating behaviors;
can only prove partial correctness)

natural semantics, in P(Σ× Σ⊥):

NJ s K def
= AJ s K ∪ { (σ,⊥) | ∃(σ0, . . .) ∈ tJ s Kω:σ = σ0 }

(models the terminating and non-terminating behaviors;
can prove total correctness)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Semantic diagram (α is an isomorphism)

traces

transition system

(small step)

statement

natural

big stepdenotational

denotational

world world

operational

τ [s]

AJ s KSJ s K

≈J s K

NJ s K

α

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Agenda

1 Avionics Software

2 Security properties

3 Static analysis

4 Operational semantics
Definitions
Finite traces semantics
Fixpoint definition

5 Denotational semantics
Deterministic imperative programs
Link between operational and denotational semantics
Interval analysis, more formally

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Language
Expressions and conditions

expr ::= V V ∈ V
| c c ∈ Z
| −expr
| expr � expr � ∈ {+,−,×, /}
| rand(a, b) a, b ∈ Z

cond ::= expr ./ expr ./ ∈ {≤,≥,=, 6=, <,>}
| ¬cond
| cond � cond � ∈ {∧,∨}

Statements

stat ::= V ← expr
| if cond then stat else stat
| while cond do stat
| stat; stat
| skip

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Concrete semantics

Classic non-deterministic concrete semantics, in denotational style:

EJ expr K : E → P(Z) (arithmetic expressions)

EJ V Kρ def
= {ρ(V)}

EJ c Kρ def
= {c}

EJ rand(a, b) Kρ def
= { x | a ≤ x ≤ b }

EJ−e Kρ def
= {−v | v ∈ EJ e Kρ }

EJ e1 � e2 Kρ def
= { v1 � v2 | v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ, � 6= / ∨ v2 6= 0 }

CJ cond K : E → P({true, false}) (boolean conditions)

CJ¬c Kρ def
= {¬v | v ∈ CJ c Kρ }

CJ c1 � c2 Kρ def
= { v1 � v2 | v1 ∈ CJ c1 Kρ, v2 ∈ CJ c2 Kρ }

CJ e1 ./ e2 Kρ def
= { true | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 ./ v2 } ∪
{ false | ∃v1 ∈ EJ e1 Kρ, v2 ∈ EJ e2 Kρ: v1 6./ v2 }

where E def
= V → Z

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Concrete semantics

SJ stat K : P(E)→ P(E)

SJ skip KR
def
= R

SJ s1; s2 KR
def
= SJ s2 K(SJ s1 KR)

SJ V ← e KR
def
= { ρ[V 7→ v] | ρ ∈ R, v ∈ EJ e Kρ }

SJ if c then s1 else s2 KR
def
= SJ s1 K(SJ c? KR) ∪ SJ s2 K(SJ¬c? KR)

SJ while c do s KR
def
= SJ¬c? K(lfp λI .R ∪ SJ s K(SJ c? KI))

where

SJ c? KR
def
= { ρ ∈ R | true ∈ CJ c Kρ }

SJ stat K is a ∪−morphism in the complete lattice (P(E),⊆,∪,∩, ∅, E)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Reminder: Non-relational abstractions

Reminder: we compose two abstractions:

P(V → Z) is abstracted as V → P(Z) (forget relationship)

P(Z) is abstracted as intervals I (keep only bounds)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval expression evaluation

E]J expr K : E] → I
interval version of EJ expr K : E → P(Z)

Definition by structural induction, very similar to EJ expr K

E]J V KX] def
= X](V)

E]J c KX] def
= [c, c]

E]J rand(a, b) KX] def
= [a, b]

E]J−e KX] def
= −] E]J e KX]

E]J e1 � e2 KX] def
= E]J e1 KX] �] E]J e2 KX]

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval arithmetic
−] [a, b] = [−b,−a]

[a, b] +] [c, d] = [a + c, b + d]

[a, b] −] [c, d] = [a− d , b − c]

∀i ∈ I: −] ⊥ = ⊥ +] i = i +] ⊥ = · · · = ⊥ (strictness)

where: + and − is extended to +∞, −∞ as:
∀x ∈ Z: (+∞) + x = +∞, (−∞) + x = −∞, −(+∞) = (−∞), . . .

[a, b] ×] [c, d] = [min(a× c, a× d , b × c, b × d),
max(a× c, a× d , b × c, b × d)]

where × is extended to +∞ and −∞ by the rule of signs:
c × (+∞) = (+∞) if c > 0, (−∞) if c < 0
c × (−∞) = (−∞) if c > 0, (+∞) if c < 0

we also need the non-standard rule: 0× (+∞) = 0× (−∞) = 0

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Summary of the abstract semantics

S]J skip KX] def
= X]

S]J s1; s2 KX] def
= S]J s2 K(S]J s1 KX])

S]J V ← e KX] def
=

{
X][V 7→ E]J e KX]] if E]J e KX] 6= ⊥
⊥̇ if E]J e KX] = ⊥

S]J if c then s1 else s2 KX] def
= S]J s1 K(S]J c? KX]) ∪̇] S]J s2 K(S]J¬c? KX])

S]J while c do s KX] def
= S]J¬c? K(lim λI]. I] Ȯ (X] ∪̇] S]J s K(S]J c? KI])))

(next slides: extending the language with assertions and local variables)

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Convergence acceleration

Widening: binary operator O : E] × E] → E] such that:

γ(X]) ∪ γ(Y]) ⊆ γ(X] O Y]) (sound abstraction of ∪)

for any sequence (X]
n)n∈N, the sequence (Y]

n)n∈N{
Y]

0
def
= X]

0

Y]
n+1

def
= Y]

n O X]
n+1

stabilizes in finite time: ∃N ∈ N: Y]
N = Y]

N+1

Fixpoint approximation theorem:

the sequence X]
n+1

def
= X]

n O F](X]
n) stabilizes in finite time

when X]
N+1 v X]

N , then X]
N abstracts lfp F

Soundness proof: assume X]
N+1 v X]

N , then

γ(X]
N) ⊇ γ(X]

N+1) = γ(X]
N O F](X]

N)) ⊇ γ(F](X]
N)) ⊇ F (γ(X]

N))

γ(X]
N) is a post-fixpoint of F , but lfp F is F ’s least post-fixpoint, so, γ(X]

N) ⊇ lfp F

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Interval widening

Interval widening O : I × I → I

∀I ∈ I:⊥ O I = I O⊥ = I

[a, b] O [c, d]
def
=

[{
a if a ≤ c

−∞ if a > c
,

{
b if b ≥ d

+∞ if b < d

]

an unstable lower bound is put to −∞

an unstable upper bound is put to +∞

once at −∞ or +∞, the bound becomes stable

Point-wise lifting: Ȯ : E] × E] → E]

X] Ȯ Y] def
= λV ∈ V.X](V) O Y](V)

extrapolate each variable independently

=⇒ stabilization in at most 2|V| iterations

Avionics Software Security properties Static analysis Operational semantics Denotational semantics

Thank you for your attention.

Questions?

	Avionics Software
	Security properties
	Static analysis
	Abstract interpretation
	Example of abstract interpretation
	False alarms
	Abstraction refinement
	Abstract domains
	Run-time error analysis

	Operational semantics
	Transition systems and small step semantics
	Traces semantics
	Summary

	Denotational semantics
	Deterministic imperative programs
	Link between operational and denotational semantics
	Interval analysis, more formally

