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Avionics Software
Software functions

Domain (C, asm)
o flight control systems DAL A
o flight warning systems DAL B or DAL C
@ communication systems DAL C
Domain (Java)
o administrative functions DAL E
@ maintenance support DAL E

Software platforms
LynxOS®-based POSIX Host Platform x86, DAL C
ARINC 653 Integrated Modular Avionics  PowerPC, DAL A

. ®_ . . .
PikeOS®-based Avionics Server Function  PowerPC, DAL C AIRBUS




Avionics Software
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Critical avionics software is subject to certification:
o regulated by international standards (DO-178 rev. B/C)
o verification = more than half of the development cost

o mostly based on massive test campaigns & intellectual reviews

Current trend:

use of formal methods now acknowledged (DO-178C, DO-333)
o at the binary level, to replace testing
o at the source level, to replace intellectual reviews
o at the source level, to replace testing

provided the correspondence with the binary is also certified
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Aircraft software
Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication
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Aircraft Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication

Navigation Surveillance & Air Traffic functions

Controller-Pilot communication (CPDLC)
Surveillance out of radar coverage (ADS)

ACARS/ATN data-link protocols over radio or satellite
(no cryptographic authentication or secrecy)

expected traffic growth
automated trajectory modification and negotiation
needed in the near future
increased focus on datalink security
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Aircraft software
Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication

exponential complexity increase (SW, HW, networks)

harder to ensure freedom from security vulnerabilities
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Aircraft software

Airline flight ops & cabin facilities — connectivity

Q to external untrusted networks

Q to avionics maintenance & ground-board communication

Enhanced control automation, HMI comfort,
systems interoperability, configurability

exponential complexity increase (SW, HW, networks)

harder to ensure freedom from security vulnerabilities

Major trends in avionics

Q more and more generic avionics platforms

Q growing parts developed by third parties
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Major trends in avionics

More and more generic avionics platforms

standard HW & communication protocols
Commercial-Off-The-Shelf components
likely to be known to unspecialised attackers

Growing parts developed by third parties

less grip on processes

need for automated security assurance

AIRBUS



assets threats
Q aircraft operational safety

Q aircraft operational & dispatch reliability
Q commercial branding & image (Airbus & Airline)
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Federal Register: April 13, 2007

http://www.gpo.gov/fdsys/pkg/FR-2007-04-13/html/E7-7065.htm

FAA emitted special conditions for B787 certification bc

“The architecture of the Boeing Model 787-8 computer systems and networks may allow access to external systems and networks, such as wireless
airline operations and maintenance systems, satellite communications, electronic mail, the internet, etc. Onboard wired and wireless devices may also
have access to parts of the airplane’s digital systems that provide flight critical functions.” “These new connectivity capabilities may result in security
vulnerabilities to the airplane’s critical systems.”

January 2010: similar special conditions for B747-8
http://wuw.gpo.gov/fdsys/pkg/FR-2010-01-15/html/2010-661.htm

December 2013: similar special conditions for Airbus A350
https://federalregister.gov/a/2013-29985

December 2013: EASA requested all airborne systems with datalink capabilities to be
re-assessed for potential security vulnerabilities related to the processing of
misformatted messages.
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http://www.gpo.gov/fdsys/pkg/FR-2007-04-13/html/E7-7065.htm
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o RTCA Special Committee 216 (SC-216) to

“help ensure safe, secure and efficient operations amid the growing use of highly integrated electronic systems and network technologies used

on-board aircraft, for CNS/ATM systems and air carrier operations and maintenance.”

o RTCA SC-216 / EUROCAE WG-72 collaboration

Q Minimum Aviation System Performance Standards (MASPS) for Aeronautical
Electronic and Networked Systems Security

Q Security Assurance and Assessment Processes and Methods for Safety-related
Aircraft Systems

©Q ED-202 Airworthiness security process specification

Q@ ED-203 Airworthiness Security Methodology and Instructions

o State-of-the-art techniques should be proposed
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assets modified only by authorised parties in authorised ways

threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication
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Integrity

assets modified only by authorised parties in authorised ways
threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

Confidentiality

assets read only by authorised parties

threats: leakage of sensitive secret information

protections: ciphering, partitioning, information flow control
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Integrity

assets modified only by authorised parties in authorised ways
threats: buffer overflow attacks, spoofing

protections: access control, digital signatures, replication

Confidentiality

assets read only by authorised parties

threats: leakage of sensitive secret information

protections: ciphering, partitioning, information flow control

Availability
assets are accessible to authorised parties in a timely manner

threats: denial of service attacks
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Integrity

buffer overflow analyses (synchronous and asynchronous)
information flow analyses (trusted vs tainted)

formal proof of security functionalities

Confidentiality

information flow analyses (public vs secret) (also integrity)

formal verification of cryptographic protocols (also integrity)

quantitative assessment of crypto primitives (also integrity)
Availability

WCET and termination analyses

resource consumption analyses

AIRBUS



memory safety
integrity

Goal: no run-time error!

no buffer overflow, invalid pointer arithmetic or dereference
no overflows in float, integer, enum arithmetic and cast

no division, modulo by 0 on integers and floats
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memory safety
integrity

Goal: no run-time error!
no buffer overflow, invalid pointer arithmetic or dereference
no overflows in float, integer, enum arithmetic and cast

no division, modulo by 0 on integers and floats

Means of assurance
certified avionics = soundness required
internal software = C source code available

intellectual reviews costly and error-prone = automation
necessary

Solution: sound static analysis

AIRBUS
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Sendmail buffer overflow

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it ( char * input , unsigned int length ) {
char ¢ , localbuf [ BUFFERSIZE ];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while ( inputIndex < length ) {
c = input [ inputIndex ++];
if (( ¢ == '<') && (! quotation )) {
quotation = TRUE ; upperlimit --;

}
if (( ¢ == '>') && ( quotation )) {
quotation = FALSE ; upperlimit ++;

}
if ((c == "'(') & (! quotation ) && ! roundquote ) {
roundquote = TRUE ;

}
if (( ¢ =="')') & (! quotation ) && roundquote ) {
roundquote = FALSE ; upperlimit ++;

if ( outputIndex < upperlimit ) {
localbuf [ outputIndex ] = c;
outputIndex ++;

}

}
if ( roundquote )
localbuf [ outputIndex ] = ')'; outputIndex ++; }
if ( quotation ) {
localbuf [ outputIndex ] = '>'; outputIndex ++; } AIRBUS

return 0:
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Characteristics:

©

direct analysis of the source code (not a model)

0 automatic (easy to set up, no interaction with the user)

o efficient

0 approximate (to sidestep decidability and efficiency issues)
Soundness:

@ semantic-based (C specification, machine integers, floats, pointers, ...)

o full coverage of all control and data

o any property found by analysis holds on every program execution
= no error missed, no false negative

@ soundness is required by DO

Abstract interpretation:  theory of the approximation of semantics

derive sound analysis with controllable cost/precision trade-off AIRBUS
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o Abstract interpretation
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Static analysis
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Define the concrete semantics of your system or program

concrete semantics = mathematical model of the set

of all its possible behaviours in all possible environments
can be constructed from semantics of commands
of system specification or programming language

AIRBUS



Static analysis
0®000000000

Define the concrete semantics of your system or program

concrete semantics = mathematical model of the set

of all its possible behaviours in all possible environments
can be constructed from semantics of commands
of system specification or programming language

Define a specification

specification = subset of possible behaviours
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Define the concrete semantics of your system or program

concrete semantics = mathematical model of the set

of all its possible behaviours in all possible environments
can be constructed from semantics of commands
of system specification or programming language

Define a specification

specification = subset of possible behaviours

Conduct a formal proof
that the concrete semantics meets the specification

use computers to automate the proof

AIRBUS
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y ()

Possible
trajectories

\j
[

Semantics[|P|]
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Forbiden zone

Specification|| P|]
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z(t)

Forbidden zone

Possible

‘ trajectories
I

Semantics[|P|] C Specification[|P|]
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Undecidability

The concrete semantics of a system/program is not computable.

Most questions on system/program behaviour are undecidable.
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Undecidability

The concrete semantics of a system/program is not computable.

Most questions on system/program behaviour are undecidable.

Example: termination is undecidable

0 assume termination(P) always terminates and returns
true iff P always terminates on all input data

o the following program yields a contradiction

P := while termination(P)do ()done

AIRBUS
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z(t)
Forbidden zone — Error !l!

Possible
trajectories

Test of a few trajectories

I

Subset of the possible behaviours = incomplete

AIRBUS
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Abstraction of the trajectories

Abstraction(Semantics[|P|])
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Forbidden zone

Abstraction of the trajectories

Abstraction(Semantics[|P|]) C Specification[| P|]
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Forbidden zone

Abstraction of the trajectories

Semantics[|P|] C Abstraction(Semantics[|P|]) C Specification||P|]

AIRBUS
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user-provided abstract semantics
A ¢ .
= finitary model
may be inferred by static analysis

user-provided abstract semantics
A . . . .
= inductive invariants
may be inferred by static analysis

abstract semantics computed automatically
£ predefined abstractions
may be tailored by the user

AIRBUS
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o Example of abstract interpretation
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Possible
discrete
trajectories
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Collect the set of states that can appear on some trace at any given discrete time :

*———1

o
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This an abstraction. Does the red trace exist?
Trace semantics: no # collecting semantics:

Q—Q7i
9??\/-\ .

s
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a=

{z 1,99,y :[2,77]}
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traces reachable states

set of (discrete) traces

Possible
discrete
trajectories

v
[y
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traces reachable states

traces of sets of states
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traces reachable states

trace of sets of states
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Static analysis
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traces reachable states

trace of intervals

z(t)

AIRBUS
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traces reachable states

Effective computation : intialisation

Initial states

AIRBUS
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traces reachable states

Effective computation : propagation

z(t)

XX

H:E Interval transition

AIRBUS
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traces reachable states

Effective computation : widening unstable constraints

z(t)

Hm Ihterval trjansition ‘iNi'[h ;Widéningi
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traces reachable states

Effective computation : widening unstable constraints

Interval itransitiorﬁ With Wi(;'ienirﬁg

> 1
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Static analysis
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traces reachable states

Effective computation : stability of interval constraints

AIRBUS
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x = 1;
1:

while x < 10000 do
2

X = x + 1

3:

od;
4.

AIRBUS
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Equations (abstract interpretation of the semantics)

X1 = [1,1]
Xo = (X1 U X3) N [—00,9999

1-X'i15 X3 = Xo®[1,1]
' while x < 10000 do X4 = (X1U X3)N[10000, +oo]
2.
v =% 41
3:
od;
4:

AIRBUS
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Resolution by increasing iterations

X1 =[1,1]
=1, Xg = (X1 U X3) N [~00,9999]
1 , X3 = Xo®[1,1]
shile x < 10000 do (K47 (X1 U X3) N [10000, +-o0]
2:
X1=10
x = x + 1
3: Xo=10
| od: XS =0
4 Xy = 0
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Resolution by increasing iterations

X1 = [1,1]
% o= 1 Xo = (X1 U X3) N [—00,9999]
1. ’ X3 = X2 [1,1]
while x < 10000 do (X4 = (X1U X3)N[10000, +oo]
) X - (L1
W = v + 1
3: Xog =10
| od; X3=10
4: Xy =10

AIRBUS
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Resolution by increasing iterations

X1 = [1L,1]
=1, X2 = (X1 U X3) N [~00,9999]
1: ’ X3 = Xo® [1,1]
while x < 10000 do X4 = (X1UX3)N[10000, +oo]
2: X1 =[1,1]
e = x + 1
3: Xz = [1,1]
| od; X3=10
4: Xg =10
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Resolution by increasing iterations

Xy = [1,1]
= 1, Xo = (X1 U X3) N [—00,9999]
1: ’ X3 = Xo@[1,1]
shile x < 10000 do (4~ (X1 U X3) N [10000, +-00]
2: X = [1,1]
e = x + 1
3: X2 - [111]
| od; X3 = [2,2]
4: Xy = 0
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Resolution by increasing iterations

X1 =[1,1]
x = 1; Xo = (X1U X3) N [—00,9999]
1. ’ X3 = X2 [1,1]
while x < 10000 do (X4 = (X1U X3)N[10000, +oo]
2. B X1 = []_,]_
3: X2 - [1)2}
| X3 = [2,2]
od; X 0
4: 4 =

AIRBUS
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Resolution by increasing iterations

X1 =1[1,1]
% = 1 X5 = (X1 U X3) N [—00,9999]
i ’ X3 = Xo@[1,1]
while x < 10000 do X4 = (X1U X3)N[10000, +oo]
L. ey
3: Xo = [1,2]
| X3 = [2,3]
od;
X4 =
4:
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Resolution by increasing iterations

X1 = [1,1]
x o= 1, Xo = (X1U X3) N [—00,9999
1: ’ X3 =Xo@®[1,1]
while % < 10000 do X4 = (¥1U X3)N {10000, +o0]
2 B X1 = [1,1]
3: X2 = [1)3}
| X3 =[2,3
od; i — 0
4. 4 =

AIRBUS
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Resolution by increasing iterations

X1=[1,1]
= 1; Xy = (X1 U X3) N [—00,9999]
1: ’ X3 = Xo@[1,1]
while x < 10000 do X4 = (X1U X3)N[10000, +oo]
2: X1 =1[1,1]
¥ =% + 1
| X3 = [2,4]
od;
Xy =
4:
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Resolution by increasing iterations

X1 =111
X = 1 Xo = (X1 U X3) N [~00,9999]
1: ! X3 =Xo®[1,1]
ihile x < 10000 do X4 = (X1UX5)N[10000, +oo]
2 ) . X1 = [1,]_
3 _ Xy = [1,4]
| d; X3 = [2,4
oa; X4 _
4:
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Resolution by increasing iterations

X1 =111
v o= 1 X7 = (X1U X3) N [—0c0,9999]
1. ’ X3=Xo@[1,1]
ihile x < 10000 do 54 = (X1UX3)N[10000, +o00]
: X :=x + 1 X1 - [1)1]
3: Xo =11,4]
| od; X3 = [2,5]
4 : X4=10

AIRBUS
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Resolution by increasing iterations

X1 = [1,1]
=1; Xo = (X1 U X3) N [—00,9999]
1 , X3 = Xo®[1,1]
shile x < 10000 do (K47 (X1 U X3) N [10000, +-o0]
2: X1 = [1,1]
e = x + 1
3: Xy =[1,5]
| X3 = [2,5
od;
4: Xg4=10
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Resolution by increasing iterations

X1 =1[1,1]
= 1; Xo = (X1 U X3)N[—00,9999]
1: ’ X3 = Xo®[1,1]
shile x < 10000 do X4 = (X1U X3)N {10000, +oo]
2: X; = [L1]
x = x + 1
N Xy = [1,5]
| od; X3 = [2 6]
: X4 —_—
4:

AIRBUS
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Convergence speed-up by widening

X1 =1[1,1]
= 1, Xo = (X1 U X3) N [~00,9999
1: ’ X3 = Xo®[1,1]
while x < 10000 do X4 = (X1U X3)N[10000, +co]
2 B X1 = [1,1]
3: X = [1,+00] <« widening
| X3 = [2,6]
od; i — 0
4. 4 =

AIRBUS
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Decreasing iterations

X1 =1[1,1]
= 1; Xo = (X1 U X3) N [—00,9999]
1: ’ X3 = Xo®[1,1]
shile x < 10000 do (K47 (X1 U X3) N [10000, +-o0]
2: X = v 4+ l Xl - [1,1]
3: Xy = [1, +o0]
' od: X3 = [2,+00]
od;
4 X4=10
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Decreasing iterations

X = 1;
1:

while x < 10000 do
2.

x =x + 1

3.

od;
4.

Xl — [1: 1}

Xo = (X1 U X3) N [—00,9999]
X3 — X2 52 [11 1}

X4 = (X1 U X3)N[10000, +o0]
X1 =[1,1]

Xy = [1,9999]

X3 = [2 o]

X4 =

AIRBUS
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Decreasing iterations

x = 1;
1:

while x < 10000 do
2

x = x + 1

3

od;
4:

X1 = [1!1}

X = (X1 U X3) N [—00,9999]
X3 = Xo[1,1]

X4 = (X1 U X3)N[10000, +o0]
X1 = [11 ]

X9 = [1,9999]

X3 = [2,+10000}

X =

AIRBUS
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Final solution

x = 1;
1:

while x < 10000 do
2

x = x + 1

3.

od;
4.

X1 = [11 1}

Xy = (X1 U X3) N [—00,9999]
X3 =X [1,1]

X4 = (X1 U X3) N [10000, +oo]
X1 = [1= 1]

X9 = [1,9999]

X3 = [2,+10000]

X4 = [+10000, +10000]
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Result of interval analysis

Xl — [1:1}
=1 X = (X1 U X3) N [—00,9999]
1: {x=1} X3 =Xo®[1,1]

while x < 10000 do 54~ (X1 U X3) N [10000, 400

2: {x € [1,9999]}

X1 =[1,1]
P Xy = [1,9999]
ot e ) = [1,
3: ize 2, +10000]} X — [2,410000]
4: {x = 10000} X4 = [+10000, +10000]
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Formal proof of absence of overflow

x = 1;
1: {x=1}
while x < 10000 do

2: {x €[1,9999]}
<— no overflow

x =x +1
3. {x € [2,+10000]}
od;
4: {x = 10000}

AIRBUS
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Forbidden zone Alarm !!!

Error or false alarm ?
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Alarm !!!
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Forbidden zone

False alarm
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z(t)

Forbidden zone

Ealse alarms

/ Possible
trajectories
Imprecise trajectory abstraction by intervals
t

= need for abstraction refinement
AIRBUS
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o Abstraction refinement

AIRBUS



How to approximate {f1, 2, f3,fa}?
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f(t)

AIRBUS
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f(t)
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f(c) h

Ji.tell.hl:fi(t) <m?

Mi ti the f;
in/ questions on the f; AIRBUS
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f(c)

Ji,te [Lh]:fi(t) > M? 1 don’t know

m

di,te[lLh]:fi(t) <m? No

Mi ti the f;
in/max questions on the f; AIRBUS
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f(t)

i f n.
No concrete case is ever forgotte AIRBUS
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f(t)

AIRBUS
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f(t)

AIRBUS
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f(c)

d and lete abstraction for mi ti the f;
Sound and complete abstraction for min/ questions on the f; AIRBUS
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f(c)

Sound and i lete abstraction for mi ti the f;
ound anad /ncompiete abstraction tor mln/max questions on € T AIRBUS
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AIRBUS



Static analysis
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o Abstract domains
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Static analysis
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z(t)

Forbidden zone

Ealse alarms

/ Possible
trajectories
Imprecise trajectory abstraction by intervals
t

= need for abstraction refinement
AIRBUS



intervals
x,y € [a, b]
Yy

octagons
NExty<c

Static analysis

congruences polyhedra
x,y €aZ+b /\Zia;X,‘Sb
Y y
t
ellipsoids geometric deviations
x>+ by? —axy < d ly| < a(1+ b)k
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Semantics
y A

> T

(In)finite sets of (in)finite traces
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Invariant abstraction: set of reachable states
y A

Set of points (xj, y;), Hoare logic

AIRBUS



Sign abstraction

yll
+ o+ +
+ +
+ +
* + o L . +
* + + +
* + +
+ +
o
+ + "
+
+ +
> T
x>0,y>0
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Static analysis

Combinations of abstractions

Interval abstraction

AIRBUS
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Octagon abstraction

yJ

+x+y<b
AIRBUS
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Polyhedral abstraction

a-x+b-y<c
AIRBUS
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Ellipsoidal abstraction

(x—aP+(y—b3?<c
AIRBUS
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Exponential abstraction

AIRBUS
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St ¥
Q.
e,

o Run-time error analysis
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Concrete semantics specification

Concrete semantics source
o C99 standard (portable C programs)
o IEEE 754-1985 standard (floating-point arithmetic)
o architecture parameters (sizeof, endianess, struct, etc.)

o compiler and linker parameters (initialization, etc.)
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Static analysis
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Concrete semantics specification

Concrete semantics source

©

C99 standard (portable C programs)
IEEE 754-1985 standard (floating-point arithmetic)

architecture parameters (sizeof, endianess, struct, etc.)

©

©

©

compiler and linker parameters (initialization, etc.)

Run-time errors

o overflows in float, integer, enum arithmetic and cast
o division, modulo by 0 on integers and floats
o invalid pointer arithmetic or dereferencing

o violation of user-specified assertions

AIRBUS
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© A. Miné

intervals congruences
x,y € [a, b] x,y €al+b
Y Yy Y
t
octagons ellipsoids geometric deviations
ANEtx+ty<c x2+by? —axy < d ly| < a(l+ b)<t

relational domains are necessary to infer precise bounds
AIRBUS
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ASTREE

A S

A static analyzer_ for C programs
o developed by CNRS/ENS (from 2002) and AbsIint GmbH

o commercialised by AbsInt since 2010
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ASTREE

A S

A static analyzer_ for C programs
o developed by CNRS/ENS (from 2002) and Absint GmbH
o commercialised by AbsInt since 2010

Q sound and automatic, scales up to very large programs

Q specialised for control-command programs = few false alarms

©Q parametric = fine-tuning by end-users
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ASTREE

A S

A static analyzetr for C programs
o developed by CNRS/ENS (from 2002) and AbsIint GmbH

o commercialised by AbsInt since 2010

Characteristics
Q sound and automatic, scales up to very large programs
Q specialised for control-command programs = few false alarms

Q parametric = fine-tuning by end-users

Deployment at Airbus

A380/A400M/A350 fly-by-wire control software (DAL A)

successful proofs of absence of run-time error
6 hours for 700,000 lines of C

all new software products (on-going effort) AIRBUS
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Sendmail buffer overflow

true alarms detected

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it ( char * input , unsigned int length ) {
char ¢ , localbuf [ BUFFERSIZE ];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while ( inputIndex < length ) {
c = input [ inputIndex ++];
if (( ¢ == '<') && (! quotation )) {
quotation = TRUE ; upperlimit --;

}
if (( ¢ == '>') && ( quotation )) {
quotation = FALSE ; upperlimit ++;

if ((c == "'(') & (! quotation ) && ! roundquote ) {
roundquote = TRUE ; upy d 1

if (( ¢ =="')') & (! quotation ) && roundquote ) {
roundquote = FALSE ; upperlimit ++;

If there is s nt space in

if ( outputIndex < upperlimit ) {
localbuf [ outputIndex ] = c;
outputIndex ++;

}

if ( roundquote )

localbuf [ outputIndex ] = ')'; outputIndex ++; }
if ( quotation ) {

localbuf [ outputIndex ] = '>'; outputIndex ++; }

‘ AIRBUS
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Sendmail buffer overflow

fixed but false alarms still

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it ( char * input , unsigned int length ) {
char ¢ , localbuf [ BUFFERSIZE ];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while ( inputIndex < length ) {
c = input [ inputIndex ++];
if (( ¢ == '<') && (! quotation )) {
quotation = TRUE ; upperlimit --;

}
if (( ¢ == '>') && ( quotation )) {
quotation = FALSE ; upperlimit ++;

if ((c == '(') & (! quotation ) && ! roundquote ) {
roundquote = TRUE ; upperlimit--;

}
if (( ¢ =="')') & (! quotation ) && roundquote ) {
roundquote = FALSE ; upperlimit ++;

if ( outputIndex < upperlimit ) {
localbuf [ outputIndex ] = c;
outputIndex ++;

}

if ( roundquote )

localbuf [ outputIndex ] = ')'; outputIndex ++; }
if ( quotation ) {

localbuf [ outputIndex ] = '>'; outputIndex ++; }

AIRBUS

return 0:
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00000000

Sendmail buffer overflow

fixed and tuned zero alarm

#define BUFFERSIZE 200
#define TRUE 1
#define FALSE 0
int copy_it ( char * input , unsigned int length ) {
char ¢ , localbuf [ BUFFERSIZE ];
unsigned int upperlimit, quotation, roundquote, inputIndex, outputIndex;
__ASTREE_boolean_pack((upperlimit, inputIndex, outputIndex ; quotation,
roundquote));
upperlimit = BUFFERSIZE - 10;
quotation = roundquote = FALSE ;
inputIndex = outputIndex = 0;
while ( inputIndex < length ) {
c = input [ inputIndex ++];
if (( ¢ == '<') && (! quotation )) {
quotation = TRUE ; upperlimit --;

}
if (( ¢ == '>') && ( quotation )) {
quotation = FALSE ; upperlimit ++;

}
if (( ¢ == '(') & & (! quotation ) && ! roundquote ) {
roundquote = TRUE ; upperlimit--; // ¢ tati

bug

}
if (( ¢ ==")') & (! quotation ) && roundquote ) {
roundquote = FALSE ; upperlimit ++;

/ I there is s >1ent s n

if ( outputIndex < upperlimit ) {
localbuf [ outputIndex ] = c;
outputIndex ++;

__ASTREE_assert((outputIndex <= BUFFERSIZE-10));
3}

if ( roundquote ) {
localbuf [ outputIndex ] = ')'; outputIndex ++; } AIRBUS

if ( quotation )
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Concrete semantics specification

Model: real-time operating system

o fixed set of concurrent threads on a single processor

o shared memory (implicit communications)

o synchronisation primitives (fixed set of mutexes)

o real-time scheduling with fixed priorities (priority-based)
e.g. A380/A400M/A350 IMA, A350 ASF, SA/LR ATSU

o mono-threaded startup # multi-threaded run (restriction)

v

AIRBUS
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Concrete semantics specification

Model: real-time operating system

o fixed set of concurrent threads on a single processor

o shared memory (implicit communications)

o synchronisation primitives (fixed set of mutexes)

o real-time scheduling with fixed priorities (priority-based)
e.g. A380/A400M/A350 IMA, A350 ASF, SA/LR ATSU

o mono-threaded startup # multi-threaded run (restriction)

Run-time errors

©

classic C run-time errors (overflows, invalid pointers, etc.)

©

unprotected data-races (report & factor in the analysis)

o incorrect system calls, deadlocks

()

but NOT livelocks, priority inversions AIRBUS
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ASTREEA

An extension of ASTREE

o Analyseur Statique de logiciels Iemps—&éel Embarqués
Asynchrones

o developed by CNRS/ENS/INRIA since 2009
1%t official merge with Abslnt’'s commercial ASTREE

AIRBUS
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ASTREEA

An extension of ASTREE

o Analyseur Statique de logiciels Iemps—&éel Embarqués
Asynchrones

o developed by CNRS/ENS/INRIA since 2009
1%t official merge with Abslnt’'s commercial ASTREE

results with Airbus

static analysis of A380 FWS

o 15 processes
2 million lines of C
o nested loops, complex data structures

900 alarms

AIRBUS
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producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] « v; w < b[j];
i+ i®nl; j— DN,
signal(c’); unlock(m);
unlock(m) signal(c);

consommer ressource w

AIRBUS
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producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] + v; w <+ b[j];
i+ i®y]1; J—Jjoen;
signal(c’); unlock(m);
unlock(m) signal(c); WARN: mutex unlocked
consommer ressource w

WARNS: data-races (dans le modele)

AIRBUS
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producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] « v; w < b[j];
i+ i®nl; j— DN,
signal(c’); signal(c¢);
unlock( ) unlock(m);

consommer ressource w

AIRBUS
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producteur consommateur
produire ressource v
lock(m); lock(m);
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
b[i] < v; WARN: array out of bounds w < b[j];
i < i+1; WARN: integer overflow j+—Jjenl;
signal(c’); signal(c);
unlock( ) unlock(m);

consommer ressource w

AIRBUS
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producteur consommateur

produire ressource v
lock(m); loek{+):

while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m);
WARN: mutex not owned

bli] < v; w < b[j];
i i@yl J—Jjenl;
signal(c’); signal(c); WARN: mutex unlocked

unlock(m) unlock{ };

consommer ressource w

WARNS: data-races

AIRBUS
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producteur consommateur
produire ressource v
lock(m); lock(m');
while (i + 1 =y j) do wait(c, m); while (i = j) do wait(c’, m');
b[i] < v; w < b[j];
i+ i®n1; j+—Jj®n T,
signal(c’); WARN: mutex unlocked signal(c); WARN: mutex unlocked
unlock( ) unlock(m’);

consommer ressource w

WARNS: data-races

AIRBUS
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Operational semantics
oce

Operational semantics

Mathematical description of the execution of programs

Q a model of programs: transition systems

o definition, a small step semantics
o example: a simple imperative language

Q trace semantics: a families of big step semantics

o finite and infinite executions
o fixpoint-based definitions

AIRBUS
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o Transition systems and small step semantics

AIRBUS



Operational semantics
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We will characterize a program by:
o states: photography of the program status at an instant of the execution

o execution steps: how do we move from one state to the next one

Definition: transition systems (TS)

A transition system is a tuple (S, —) where:
o S is the set of states of the system
o —»C P(S x S) is the transition relation of the system

Note:

o the set of states may be infinite

AIRBUS
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We now look at a more classical imperative language (intuitively, a bare-bone subset
of C):

o variables X: finite, predefined set of variables

o labels LL: before and after each statement

o values V: Vi UVgoat U ...

e 1= veEVir UVt U...|etelexe]... expressions
c = TRUE | FALSE | e<e | e=e conditions
i = x:1=e¢; assignment
| if(c)belseb condition
| while(c) b loop
b = {i;...;i;} block, program(IP)

l-\ll(éus
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A non-error state should fully describe the configuration at one instant of the
program execution:

o the memory state defines the current contents of the memory
meM=X—YV

o the control state defines where the program currently is

o analoguous to the program counter
o can be defined by adding labels L = {f, 4, ...} between each pair of consecutive
statements; then:

S=LxMu{Q}

AIRBUS
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o The semantics [e] of expression e should evaluate each expression into a value,
given a memory state

o Evaluation errors may occur: division by zero...
error value is also noted Q

Thus: [e] : M — Vu {Q}
Definition, by induction over the syntax:

[vl(m) = v
[x](m) = m(x)
[eo +e1](m) = [[eoglé(m)i[[el]](m) £ [e](m) = 0
if [e1](m) =
[eo/e1](m) = {[[eo]](m)/[[elﬂ(m) otherwise

where & is the machine implementation of operator &, and is Q-strict, i.e.,
Vv eV, veQ = Qv = Q. AIRBUS
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o The semantics [c] of condition c should return a boolean value

o It follows a similar definition to that of the semantics of expressions:
HCH M — Voo & {Q}

Definition, by induction over the syntax:

[TRUE](m) = TRUE
[FALSE](m) = FALSE

TRUE  if [eq](m) < [e1](m)

[eo < ei](m) = FALSE if [eq](m) > [e1](m)
Q if [eo](m) = Q or [e1](m) =Q
TRUE  if [eq](m) = [e1](m)

[eo =ei](m) = FALSE if [eq](m) # [e1](m)
Q if [eo]l(m) = Q or [e1](m) = Q

AIRBUS
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We now consider the transition induced by each statement.

Case of assignment [ : x =¢; [
o if [e](m) # €, then (f, m) — (G4, m[x < [e](m)])
o if [e](m) = Q, then (fh,m) — Q

Case of condition f : if(c){4 : bs L} else{5 : b 4} 5
o if [c](m) = TRUE, then (l,m) — (&4, m)

o if [c](m) = FALSE, then (f,m) — (&, m)
o if [c](m) =, then (o, m) — Q

o (&,m) = (&,m)

o (la,m) = (&5, m)

AIRBUS
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Case of loop fp : while(c){4 : b: b} &
(lo, m) — (f, m)
(&,m) — (a,m)

(o, m) = (B, m)
(b, m) — (B, m)

o if [c](m) = TRUE, then {

o if [c](m) = FALSE, then {

. , Q
o if [c](m) = Q, then { Eg Z; : Q
Caseof {lp :di0;h . i lp—1in—1;ln}

o the transition relation is defined by the individual instructions

AIRBUS
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The language we have considered so far is a bit limited:
o it is deterministic: at most one transition possible from any state

o it does not support the input of values

Changes if we model non deterministic inputs...

. with an input instruction:
o in=...| x:=input()
o [p: x = input(); ; generates transitions
Vv eV, (b,m) = (4,mx < v])

@ one instruction induces non determinism

AIRBUS
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C language:
o several norms: ANSI C'99, ANSI C'11, K&R...

o not fully specified:

o undefined behavior

o implementation dependent behavior: architecture (ABI) or implementation
(compiler...)

o unspecified parts: leave room for implementation of compilers and optimizations

o formalizations in HOL (C'99), in Coq (CompCert C compiler)

OCaml language:
o more formal...

o ... but still with some unspecified parts, e.g., execution order

AIRBUS
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o Traces semantics

AIRBUS
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o So far, we considered only states and atomic transitions

o We now consider program executions as a whole

Definition: traces

o A finite trace is a finite sequence of states s, ..., sp, noted (sp,...,sn)

o An infinite trace is an infinite sequence of states (s, . ..)

Besides, we write:
o S* for the set of finite traces
o SY for the set of infinite traces

o S* =S*USY for the set of finite or infinite traces

AIRBUS
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We consider a transition system S = (S, —)

Definition

The finite traces semantics [S]* is defined by:

[[S]]* = {<.§o, .. .,s,-,> es” | Vi, Ssi — 5,'+1}

Example:
o contrived transition system S = ({a, b, ¢, d},{(a, b), (b, a), (b, c)})

o finite traces semantics:

[S]* = { (ab,...,a,b,a), (b,a,...,a,b,a),
(a,b,...,a,b,a,b), (b,a,...,a, b,a,b),
(a,b,...,a,b,a,b,c), (bya,...,ab,a,b,c)
{c), (d) }

AIRBUS
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Similarly, we can write the traces of a simple imperative program:

b: x=1, T = (o lx = %0,y = yob). (& (x = L,y = yo)).
h:y:=0 (6, (x = 1,7 = 0)), (b, (x = 1,y = 0)),
L : while(x < 4){ (4, (x =1,y =1)),(6, (x =2,y =1)),
[3: y:y+X, ([37(]}(:2737:1[))7([47(])(:27}7: D)v
fy: x =x+1; (5, (x =3,y =3)), (5, (x =3,y =3)),
ﬁ:’: } ([47(]XI37y:6D)7([5’(]XZ47y: D)v

le - (final program point) (. (e =4,y =6))

o very precise description of what the program does...

o ... but quite cumbersome

AIRBUS
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We define a semantic function, that computes the traces of length i 4+ 1 from the
traces of length i (where i > 1):

Let Z = {e} W{(s) | s € S}.
Let F, be the function defined by:

F.: P(S*) — P(S)
X — X U{(s0,--,8n8n+1) | (50,--,5n) € X Asp = spy1}

Then, F; is continuous and thus has a least-fixpoint greater than Z; moreover:

Ifpz A = [ST* = Upen F4(Z)

AIRBUS
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Example, with the same simple transition system S = (S, —):
o S={a,b,c,d}
o — is defined by a— b, b —+aand b — ¢

Then, the first iterates are:

FAZ) = {e(a),(b),{c),(d)}

F*I(I) = FS(I)U{<bva>a<avb>v<b’c>}

FE(I) = F*l(I)U{<a,b,a),(b,a,b>,<a,b,c>}

F3(Z) = F2(Z)u{(b,a,b,a),{a,b,a,b), (b, ab,c)}
FXTI) = F3(Z)u{{a,b,a,b,a),(b,a,b,a,b)(ab,ab,c)}
F>(7) = ...

o the traces of [S]* of length n+ 1 appear in F](Z)
AIRBUS
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o Summary

AIRBUS
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We have discussed:

o small-step / structural operational semantics: individual program steps
o big-step / natural semantics: program executions as sequences of transitions

o their fixpoint definitions and properties

Next:
o another family of semantics, more compact and compositional

o semantic program and proof methods

AIRBUS
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Denotationa
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Operational semantics
Defined as small execution steps (transition relation)
over low-level internal configurations (states)

Transitions are chained to define (maximal) traces
possibly abstracted as input-output relations (big-step)

Denotational semantics

Direct functions from programs to mathematical objects (denotations)
by induction on the program syntax (compositional)
ignoring intermediate steps and execution details (no state)

= Higher-level, more abstract, more modular.
Tries to decouple a program meaning from its execution.
Focus on the mathematical structures that represent programs.
(founded by Strachey and Scott in the 70s: [Scott-Strachey71])

“Assembly” of semantics vs. “Functional programming” of semantics

AIRBUS



o imperative programs

effect of a program: mutate a memory state
natural denotation: input/output function
D ~ memory — memory

challenge: build a whole program denotation
from denotations of atomic language constructs (modularity)

= very rich theory of mathematical structures
(Scott domains, cartesian closed categories, coherent spaces, event structures,
game semantics, etc. We will not present them in this overview!)

AIRBUS
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o

o Deterministic imperative programs
AIRBUS
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IMP expressions

expr = X (variable)
’ c (constant)
| <& expr (unary operation)

eXpr & expr  (binary operation)

o variables in a fixed set X € V
o constants Z & BUZ:
o booleans B < { true, false }
o integers Z
o operations ¢:
o integer operations: +, —, X, /, <, <
o boolean operations: —, A, V

o polymorphic operations: =, # AIRBUS
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Statements
stat = skip (do nothing)
‘ X + expr (assignment)
| stat; stat (sequence)
| if expr then stat else stat (conditional)
|  while expr do stat (loop)

(inspired from the presentation in [Benton96])

AIRBUS
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Elexpr] : € —~1

. lef . . .
o environments £& = V — 7 map variables in V to values in 7

©

E[ expr ] returns a value in Z

©

— denotes partial functions (as opposed to —)

necessary because some operations are undefined
o 14 true, 1A2 (type mismatch)
o 3/0 (invalid value)

©

defined by structural induction on abstract syntax trees
(next slide)

(when we use the notation X[y ], y is a syntactic object; X serves to distinguish between different semantic
functions with different signatures, often varying with the kind of syntactic object y (expression, statement,

etc.);

X[y ]z is the application of the function X[y ] to the object z) AIRBUS
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Elc]p def ¢ S8

E[Vp Eopv) ez

E[—e]p EC Y €z ifv=E[elpeZ

E[-e]p ECY €B ifv=E[e]peB

Eler +e]p def vitw €Z ifvi=Ele]p€Z vu=E]lelpeZ
E[e1 —ex]p def vi—ve €7 ifvi=EJ|e]peZ,va=E[e]pcZ
Eler x e2]p def vixve €Z ifvi=E[e]peZ,va=E[e]pclZ

E[expr] : € = I Ela/elr % w/w €z fw=EealpcZv.=ElelpcZ)\{0}

Elarelr % wAw €B ifw=E[e]peB vw=E[e]pcB
Elavelr % wvw €B ifwu=E[elpcB w=E[elpcB
Ela<elr % w<w €B ifw=E[elpcZv=E[elpcZ
Ela<elp % w<w €B ifu=ElealpcZv=ElelpcZ
E[le1 = ex]p def vi=va €B ifvi=EJ|ea]peZ,vr=E[e]peZ

Ele #elp <

undefined otherwise

viZvw €B ifvi=Ele]peZ,vv=E[elpecZ

AIRBUS
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S[stat] : € —¢&

@ maps an environment before the statement
to an environment after the statement

o partial function due to

@ errors in expressions
o non-termination

o also defined by structural induction

AIRBUS
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Rewriting the semantics using total functions on cpos:
o E[expr] : &1L ST,
returns L for an error or if its argument is L
o S[stat] : &L = &1
o S[skip]p = p
o S[lei;e2] & S[ex]oS[er]

det [ L if E[e]p=L
o S[X«elp = { p[X — E[e]p] otherwise

S[s1]p ifE[e]p = true

o S[if ethens,else s, ]p & { S[s,]p ifE[e]p = false
1 otherwise
o S[whileedos] & IfpF
p if E[e]p = false
where F(f)(p) =< f(S[s]p) ifE[e]p = true

1L otherwise AIRBUS



Denotationa
00000

How do we handle loops?

the semantics of loops must satisfy:
S[while edo s]p =
p if E[e]p = false
S[while edo s(S[s]p) if E[e]p = true
undefined otherwise

this is a recursive definition, we must prove that:
o the equation has solutions
o choose the right one
= we use fixpoints on partially ordered sets
AIRBUS



o

o Link between operational and denotational semantics

AIRBUS



Are the operational and denotational semantics consistent with each other?

Note that:

o systems are actually described operationally

o the denotational semantics is a more abstract representation

(more suitable for some reasoning on the system)

= the denotational semantics must be proven faithful
(in some sense) to the operational model to be of any use

AIRBUS



Big-step semantics:  abstraction of traces
only remembers the input-output relations

many variants exist:
o "angelic” semantics, in P(X x X):
def ’ . /
Als] = {(o,0")|3(o0,...,00) Et[s]*:0 =00,0" =0}
(only give information on the terminating behaviors;
can only prove partial correctness)

o natural semantics, in P(X x X, ):
N[s] € A[s]u{(s,L)|3(o0,...) € t[s]*:0c =00}

(models the terminating and non-terminating behaviors;
can prove total correctness)

AIRBUS



(e is an isomorphism)

denotational operational
world world
o
S[s] denotational ----------- bigstep  A[s]

natural N[s]
traces =~[s]

transition system 7 []
(small step)

e

statement

AIRBUS
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Expressions and conditions

expr = V Vevy
| ¢ ceZ
|  —expr
| exproexpr oe{+,—,%x,/}
| rand(a, b) a,beZ

cond = expr i< expr e {<, > =,#4,<,>}
|  —cond
|  cond ¢ cond o€ {A,V}

Statements
stat V <« expr

if cond then stat else stat
while cond do stat

stat; stat

skip

AIRBUS



Classic non-deterministic concrete semantics, in denotational style:

Elexpr] : & — P(Z) (arithmetic expressions)

E[VIp = {p(V)}

Elc]p “{c}
E[rand(a,b)]p € {x|a<x<b}
E[—e]p E{-vlveE[e]p}

Elecelp  ={viowv|vcE[elp vocE[elpo#/Vv#0}
C[ cond] : € — P({true, false}) (boolean conditions)
Cl-clp  “{-v|veClclp)
Clacalpr E{vown|vueClalp veClalp}
Clerxie]p € {true|Ivy € E[er]p, vo € E[ e ]p:vi i vo } U
{false|3vy € E[er]p, v» €E[ex]p:vitava }
where £ £V 57 AIRBUS




S[stat] : P(E) — P(E)

S[skip]R LR

S[si; s21R ZS[](S[s1]R)

S[V « e]R LV v]peR, veE[e]p}
S[if ¢ then s; else 5, ]R <'S[ s |(S[c?]R) US[ s ](S[~c?]R)
S[while c do s|R EIS[-c?](ifp M. RUS[s](S[c?]/))
where

S[c?]R L peR|truecClc]p}

S[stat] is a U—morphism in the complete lattice (P(£),C,U,N,0,E)

AIRBUS



Reminder: we compose two abstractions:
o P(V — Z) is abstracted as V — P(Z) (forget relationship)
o P(Z) is abstracted as intervals 7 (keep only bounds)

AIRBUS



Ef[expr] : &% =T
interval version of E[expr] : &€ — P(Z)

Definition by structural induction, very similar to E[ expr |

E4] VX LEXE(V)

Ef[ c]X* e, ]
Ef[rand(a, b) | X* <'[a, b]

Ef[ —e ] X* R e] Xt

Efleoe]X!  EEe]X? of Effe]X!

AIRBUS



o —[a,b] =[-b,—a

o [a,b] +F [c,d] =[a+c,b+d]

e [avb] —t [Cd] = [a*d:bfc]

oViel -t 1 =1 —i—ﬁi:i—i-ﬂ_L:-":L (strictness)
where: + and — is extended to +00, —00 as:
Vx € Z: (+0) + x = 400, (—00) + x = —00, —(+00) = (—0),...

o [a,b] xF [c,d]=[ min(axc,axd, bxc,bxd),

max(ax c,ax d, bx c, bxd)]

where X is extended to +co and —oco by the rule of signs:
¢ X (+00) = (+0) if ¢ >0, (—o0) if c <0
¢ x (=00) = (—00)ifc>0, (+00)ifc <0

we also need the non-standard rule: 0 x (+00) =0 x (—o0) =0

AIRBUS



St skip] X! & X!
S s s ] XF L SH s [(SH] s ]XF)

SV« e]Xt XAV s Ef[e] X if Ef[e] Xt # L
I B if EE[e]X¢ = 1

SH[if c then s; else 5, [ X* % SE[ s [(SH[ c?[X?) UF SH[ s J(SF[ ~c? ] XF)

St[while ¢ do s]X* % SH[~c?](lim AE. 15 7 (XE UF SE[s](SE[c?]1%)))

(next slides: extending the language with assertions and local variables)
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Widening:  binary operator v : £f x £ — £ such that:
o Y(XHyUu(YH) Cy(XEv YH) (sound abstraction of U)

o for any sequence (X,g),,eN, the sequence (Y,g),,eN

{ vi X}
def
Yr?—l—l = Y,? v Xrg—i-l

stabilizes in finite time: AN € N: Yyt — Y/g/+1

Fixpoint approximation theorem:

o the sequence X£+1 & XF v FH(X}) stabilizes in finite time
o when X}LH C Xﬁ,, then Xﬁ, abstracts Ifp F

Soundness proof: assume Xt

i1 C XE, then
AXE) 29Xy 1) = v(X§ ¥ FEXE)) 2 v(FHXR)) 2 F(v(XE))

'y(X,:\t,) is a post-fixpoint of F, but Ifp F is F's least post-fixpoint, so, 'y(X,:\t,) DIfpF AIRBUS



Interval widening V:Zx7Z —7T

VieZ: 1Lvi=1v.l=1I
(2,5 ¥ [c, d] def a ifa<c b if b>d
' o —00 fa>c |+o ifb<d

@ an unstable lower bound is put to —oco
@ an unstable upper bound is put to +oo

@ once at —oo or +00, the bound becomes stable

Point-wise lifting: v : & x &8 — &F

XEV YEZ AV e V. XY V)V YEV)

extrapolate each variable independently

—> stabilization in at most 2|V| iterations AIRBUS
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