Formal development of complex systems

Yamine AIT-AMEUR, Neeraj Kumar SINGH

IRIT/INPT-ENSEEIHT
{yamine, nsingh}@enseeiht.fr}

2020

T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 1/147

@ Introduction

© Propositional logic
© Predicate logic

© Set theory

© Modelling of Systems

@ The Event-B method
@ Refinement of Event-B machines

@ Proof with Event-B
@ Proof activity
@ Proofs with Event-B and the Rodin platform

@ The Rodin Platform
@ Animation of Event-B models

@ Conclusion

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

2020

iyl

2/147

Plan

@ Introduction

iyl

P

N. SINGH (IRIT/INPT-ENSEEIHT {

rmal development of complex systems.

Introduction

Many complex systems are present in engineering, finance, marketing, etc.

@ Complex systems with integration of
software

hardware

plants

communications

humains

vVYyvYVvyy

@ Need to handle the environment in which a system evolves

@ Input/output, close/open loop

I \Ec o

0=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 4/147

Introduction

Some problems

@ Expression of needs, requirement analysis

» fonctionnal,
» non fonctionnal

Specification of systems
Design of systems : composition, decomposition

System Validation / Verification, in particular for critical systems

SystemCertification according to certification authorities or standard
requirements

Which techniques ? Which methods ?

iyl

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 5/147

Introduction

The development of complex systems requires the definition of modelling
languages offering means for

@ expressing and defining abstractions of these systems in order to
> design and build these systems,
> reason on these systems to check their properties,
> predict their behaviour, if possible in any situation/context
@ These languages shall
> be rigorously/formally defined

* non ambiguous
* expressive

> support the capability to express different system facets, views, etc.
* functional

* safety and reliability

* real time

* architecture

* simulation

* .
e
il

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 6 /147

Introduction

@ Science of language (Jean-Piaget encyclopaedia "Logique et Connaissance
Scientifique" or "Scientific logics and knowledge")

If we refer to whom is talking, or more generally
to users of the language, this investigation relates to the
pragmatics.

If we make abstraction of language users and
analyse only language expressions and their meanings,
then, we are dealing with semantics.

Finally, si if we make abstraction of the meanings
to analyse only the relations between expressions, then,
we are dealing with syntax.

These three elements are constituents of science
of language or semiotics.

[[[}

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 7/147

Introduction
Model, associated to semantics
@ Interpretation of the understanding of a situation,
@ Description of entities and their relations
@ Definition borrowed from M. Minsky "Société de I'esprit"

For an observer A, M is a model of object
O, if M helps A to answer the questions he/she
has on O

@ The definition of system models at different abstraction levels allows
designers to reason on the system to design
Models shall
@ be rigorously defined
o offer reasoning mechanisms
> interpreters,

> proof systems,

» simulators,

> analysers,

> type checkers, il
> etc. - __I

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 8/147

Introduction

Objectives of the lecture

@ Present a formal system development method based on
» first order logic,

set theory,

> state-transitions systems

> refinement/composition/decomposition

v

Plusieurs liens avec les cours déja effectués
o Modélisation
e GLS
o VAS
@ Spécification formelle

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 9/147

Plan

© Propositional logic

iyl

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex

Objectifs

@ Recalls of basic logics concepts

@ Handling proofs and proof system

=0

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

Propositional logics

Propositional logics operators.

1L

T

-A
ANB
AV B
A= B
A<— B

Constant False
Constant True
Negation
Conjunction
Disjunction
Implication
Equivalence

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

2020

iyl

12/147

Propositional logics

A—B=-AVB
A<+B=(A—=B) A (B— A)
Idempotent 2 C 2 _ 2
AN-A=1
AV-A=T
ANL =1
ANT =A
AvL=A
AVT=T
—A=A
Commutativity ANB=BANA
AVB=BVA
L AANBYAC=AAN(BANC
Associativity gA\/Bng:AVEB\/Cg

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

2020

13 /147

Propositional logics

AN(BVC)=(AAB)V(AANC)
AV(BANC)=(AVB)A(AV ()
~(AAB)=-AV-B
~(AVB)=-AA-B
AV(-AANB)=AVB
AN(-AVB)=AAB
AV(AANB)=A
AN(AVB)=A

Distributivity

De Morgan

[[|

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 14 /147

Proofs and proof system

Sequent and inference rule
@ Sequent

list_of _hypotheses I+ conclusion

The list_of _hypotheses may be empty (e.g. case of a theorem)

. A A, A
o Inference rule. Generic form —ror %
» Ais a set of sequents (may be empty) called Antecedent
» C is a Consequent sequent

r

@ Inference rule

list_of __sequents
sequent

The list_of _sequents may be empty (e.g. case of an axiom) T

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 15 /147

Proofs and proof system

@ Definition of axioms.
@ Useful for definitions.

AT A (Axiom for hypothesis)

AT A (Axiom for extended hypothesis)

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 16 /147

Proofs and proof system

@ Definition of inference rules.

@ Useful for inferring (deduction) of new sequents

@ Implication Elimination (E) and Introduction (1)

rN-A r-A—B
r-B

(E-)

_ARB)
rFA=B \~

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 17 /147

Proofs and proof system

@ And Elimination (E) and Introduction (1)

r-AAB

o AneE 1
rra (Ed)
r-AAB)
—rre &)
r'FA I'eB

TEAAB (12)

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 18 /147

Proofs and proof system

@ Or Elimination (E) and Introduction (1)

B g
FFAVB

_TEA
rFAVB VY

rFAvB T;A-C T;BEC
r=c (Ev)

@ Elimination is useful for case base reasoning

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 19/147

Proofs and proof system

@ Handling negation

M=_14

Tra (&)
m (Tiers EXCIU)
I (AI;)—J/Z\) — (Pierce)

Be careful, non constructive features.

T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 20/ 147

Proofs and proof system. Tactics

Tactics
@ Tactics are compositions of inference rules
o Useful to handle big proof steps
@ "Proof programming"

» unfolding/folding
» choice
> iteration

Proof systems implement
@ inference rules and
@ tactics

definitions

I \Ec o

o= |

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 21/147

Plan

© Predicate logic

iyl

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex

Predicate logic, first order logic (FOL)

dx.P | Existential Quantification

Vx.P | Universal Quantification

Introduction of predicates, with variables, relations and functions.
° P(x1,...xy)
o P(f(x1),...,8(Xn—2,Xn—1), Xn)

where
@ P is a predicate symbol

e f and g are function symbols

iyl

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 23 /147

Sequents in predicate logic

M-Vx.A
W (EV form 1)
M- Vx.A
ﬁ (EV form 2)
M=A

The [t/x]W notation represents the substitution, in W, of the occurrences of x by t

=0

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 24 /147

Sequents in predicate logic

M- 3x.A

TrElAA (Eg form 1) (for t = f(FV(I') U FV(A)))

Mt x]A
MF3x.A (1)

N-3xA I, A-B
M-B

(Eg form 2) (for x ¢ FV(I') U FV(B))

[[|

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 25 /147

Sequents in predicate logic

Refinement of the language. Introduction of Equality

@ Extension of the definitions of predicates avec by the introduction of the

Equality predicate

Predicate ::= Expression = Expression
Expression ::=
Variable ::=

Introduction of terms with
@ variables x, y, z ---
@ constants a, b, ,c,
e functions f, g, ,/ ---
Examples
e Terms a, x, a+b, f(x,y,a), h(g(x),a),y)
o Predicates P(x), x=a P(f(x,y,a),z), 1l(x)=a

vy

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020

26 /147

Plan

© Set theory

iyl

P

N. SINGH (IRIT/INPT-ENSEEIHT {

rmal development of complex systems.

Objectives

Recall of basic notions in
@ Set theory
@ Relations

@ Functions

=0

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

Sets

@ Introduction of the Belongs To predicate E € S where

» E is an expression

» Sis aset

@ Introduction of set constructors.

@ Axiomatisation based definitions £

Remark.
@ This lecture does not represent the whole axioms (definitions)
@ Part of these axioms are given.

@ They are relevant for the understanding of next steps.

[[[}

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 29 /147

Sets

Three basic constructors are considered

Let S and T be two sets, x a variable and P a predicate. The follwoing set
constructions are defined.

o Cartesian Product S x T
@ The set of Subsets or powerset P(S)

o Definition of sets by comprehension {x | x € S A P}

These constructs are used to define other set operators.

—\Ec

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 30 /147

Sets. Basic operators

@ Inclusion SC T

@ Associated axioms

SCT
S=T

SeP(T)
SCTATCS

@ Define an order relation on sets.

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 31/147

Sets. Basic operators

Union U
Intersection N
Difference (Subtraction) | —
Extension {i .. }
Empty Set 1%}

@ A set of axioms is associated to each of these operators.

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 32/147

Sets. Generalised operators

Generalised Union union(S)
Quantified Union Ux.(x € SAP)
Generalised Intersection | inter(S)
Quantified Intersection | Nx.(x € SA P)

@ A set of axioms is associated to each of these operators.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

2020

iyl

33/147

Binary Relations

Binary Relation ST
Domain dom(xr)
Co-domain (Range) | ran(r)
Inverse r—1

@ Axiomatisation. A set of axioms is associated to binary relations.

reSeT 2 rCSxT
Ecdom(r) £ 3Jy(Ewycr)
F € ran(r) £ Ix(x—Fer)
E—sFert £ Fe—Eecr

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 34 /147

Binary Relations
Recall of basic notions

o Partial / Total

@ Surjective / Injective / Bijective

Specific definitions of binary relations

Partial Surjective binary relation | S<» T
Total binary relation S« T
Total Surjective binary relation S«» T

Axiomatisation

S<» T | IfreS«» T thenran(r)=T
S« T | IfreS« T then dom(r) =S
S«»T | IfreS<«» T then dom(r)=S5 A ran(r)=T

v

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 35 /147

Binary Relations

Manipulation of binary relations

@ Restriction and Subtraction

Domain Restriction | S<r
Range Restriction r>T
Domain Subtraction | S<r
Range Subtraction re T

Axiomatisation

S<r | S<ar={x—y|x—yer A xeS5}
r>T | r>T={x—y|x—yer ANyeT}
S<gr | S<ar={x—y|x—yerAx¢S}

re>T | reT={x—y|x—yerAx¢T}

v
o

o= |

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 36 /147

Binary Relations

Manipulation of binary relations

@ Image, composition, overriding and identity

Image r[S]
Composition | p; g
Overriding p<q
Identity id(S)

Manipulation of binary relations

@ Image, composition, overriding and identity

r[S] r[S] ={y|3x€SAx—yer}
p;q Vp,gpe S TAGgeT U=
pig={x—yl(Fz. x—>zeEpAz—>yeEq)}
p<tq | p<tq=qU(dom(q)<r)
id(S) | id(S) ={x— x|x € S5}
S<id | id(S) ={x— x|x € S}
. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

2020

37 /147

Binary Relations

Manipulation of binary relations

@ Products and projection

Direct Product PR q
First (Left) projection prjl
Second (Right) projection | prj2
Parallel Product pllg

Axiomatisation

PRG | PRq={x—(y—2z)[x—>yeEpAx—zEp}

pil | pril(r) = {x [x—y €1}

pri2 | prj2(r)={y | x—y€r}

pllg | plla={(x— y)—=(m—n)|x,y,mn x—mepAyr n€q}

v

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

2020

[(e ==

0= |

38147

Binary Relations

Manipulation of binary relations
All these operators are associated to
@ axiomatic definitions (axioms)

@ properties
o definitions in predicate logic

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 39 /147

Functions and Functions Operators

Functions

Partial Function | S+ T
Total Function S—T

Axiomatisation. A Function is a Relation

feSw»T £ feS« TAFLf=id(ran(f))
FfeSTAFLICTaid

feS—»T 2 fecS+TAS=dom(f)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 40 / 147

Functions and Functions Operators

Other Function definitions

Partial Injection ST
Total Injection S—T

Partial Surjection | S+ T
Total Surjection S»T

| Bijection | S—> T |

Axiomatisation

ST | Sw»T={f-fecSw»TAfleT+-S}
S—T | S—T=5S+TNS—T

S»T |Sw»T={f-feS+-TAran(f)=T}
S»>T | S>T=S+»TNS—>T

ST |S5—T=5—-TNS—>»T

4

= U

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 41 /147

Definition and Function Application

Lambda expression
@ Definition of a Function
| A&.(S|E) or Mx.(x € S| E(x)) |
@ Application of a Function
|am bex.(xeS|E(x)) & E(a)=b |

with ae S

Well definedness

@ Let f be a Partial Function, then
|b=f(a) = a—rbef|
This property defines a Well- Definedness condition for a Function Definition

a € dom(f)

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 42 /147

Logic notations

Rewriting logic expressions
@ Let us consider the predicate
f~Lf Cid
@ It can be successfully translated to

Vx,y,z- x—=y€EfAx—zef=y=z

Applying rewriting

f~LfCid

Vy,z- y—ze(fLif)y=y—zecid

Vy,z- ymze(fLif)=y=z

Vy,z-(Ix- ymxef IAx—zef)=—=y=12z
Vy,z-(3x- x—=y€EfAx—zef) = y=2z

| Vx,y,z- x—wyefAx—zef=y=1z |

4

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020

43 /147

Recap of the whole introduced notions.

Recap document from Ken. Robinson (Uni. South Wales - Sydney -
Australia

@ See the document providing a recap of the set of constructions introduced
previously.

@ The correspondences between mathematical notations and ASCII code
available in this document are useful for the users of the Rodin Platform.

This document is ditributed to Students

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 44 / 147

Plan

© Modelling of Systems

iyl

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

General notions on Systems

@ A system is observed through its evolution during life time
@ Observation of the system elements/components changing over time
@ A system is characterised by state
@ A state is made of
» /contextual / fixed / non-modifiable information defined is a dans la theory
containing all the required definitions and resources allowing a system designer
to describe a state
» modifiable / flexible information that record the changes of the system state
during time
associated to the system to design, to analyse, to simulate, etc.

System Constants and variables
o Constants define contextual / fixed / non-modifiable information

o Variables define modifiable/ flexible information

When the systems are described, using the mathematical constructs presented in
previous chapters Constants and Variables are defined

Remark. Note that other system modelling languages are available : type based,

synchronous/asynchronous, simulation, semi-formal modelling languages, =TT

programming languages, etc.
2020 46/147

General notions on Systems

States as a set of variables
o A state S is defined as a set of state variables {x, -}

@ State variables are valued. They are associated to variable values.

States evolution
@ A state S may evolve after the occurrence of an event

o Notation x =% x’ where

ev is an event
x et x’ represent respectively a state variable x before and after the
occurrence of event ev.

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 47 / 147

General notions on Systems

Before-After predicates as a relation on states

@ Event ev defines a relation on states.

BAA(x,x’) is a Before-After Predicate characterising the event ev.
Example.
If evis x := x + 1 then BAA(x,x) is xX' =x+1 or

BAA(x,x')=x" =x+1

This definition is the assignment definition of Hoare Logic
{[x/E]V}x = E{V}

First order logic for BAA

@ Again, in the course, we rely on first order logics to describre Before-After
Predicates

@ The logic notions presented in the previous chapters will be used.

Remark. Note that other logics could have been used to describe such a R
relation : temporal logics, dynamic logics or type systems DIQI

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 48 / 147

General notions on Systems

@ BAA describes a single state variable change only.

@ We need to describe evolution of states along time

Traces as sequences of state evolutions

@ A trace is a sequence of events occurrences
e e e3 e3 ey (=1 € (=
X0 —> X1 —> X2 —>X3 —> X4 —>X5g —>Xg —>X7...Xnp —> Xng1-..

@ A trace with events which do not modify state variables can be described as
well (presence of 7- transitions)

ey e T es =7} T (=) €n
X0 —7 X1 —> X2 —> X3 —> X4 —> X5 —>Xg —7 X7...Xnp —> Xpt1...

The 7 events describe stuttering steps.
@ The set of all traces allows a designer to observe the behaviour of a system

V.

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 49 / 147

General notions on Systems

@ A safety property S on a state x asserts that nothing bad happens in state x
Notation S(x)

@ An invariant is a safety property in all the states of all the observed traces
@ The property S shall be observable in all the states of the system

S(xo) LN S(x1) L2, S(x2) — S(x3) BN S(xa) L S(xs5) — S(xg)
=55 S(x7) ... S(Xn) = S(Xnt1) - - -

o We write
Vie N. S(x;)

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 50 /147

General notions on Systems

Vi € N. S(Xi)

@ To prove this kind of properties we rely on induction on the length of the
traces
» The safety property holds at initial state, at initialisation
> If this property holds in any state x; (recurrence hypothesis) and it still holds
after the occurrence of any triggered event, then this property holds for all
states of traces of the system
@ The proof of this property may be complex when it is realised on the whole
set of events of a system
» Use refinement/abstraction to reason on "less complex" or on abstract
traces which hide some events (using 7 events) of the concrete trace
» Refinement/abstraction shall preserve the link between abstract and concrete
traces
Need to define a refinement/simulation relationship

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 51 /147

General notions on Systems

@ A liveness property P leads_to Q for a state x asserts that there exist a
path in the traces that lead from a state x where P holds leading to a state
x" where Q holds

Notation P ~ @

@ A liveness property P ~~ @ asserts that a state x’ where Q(x’) holds is
reachable from a state x where P(x) holds

@ The property P ~~ Q is defined on a trace such that when P(x;) holds, there
exists a future state x;,j > i where Q(x;) holds.

ey e T e3 ey T
Xi — Xit1 — Xj+2 — Xi33 — Xjr4 — Xjit5 — Xi16
€6 €
— Xit7 - Xj 7 Xj41 ...
o We write

For astate x;, ie N. FeN j>i. P(x)= Q(x) iQJ\ﬁ.T

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 52 /147

General notions on Systems

For astate x;, ieN. JjeN. j>i. P(x)= Q(x)

@ To prove this kind of properties we rely on the definition of a variant i.e. a
sequence of decreasing natural numbers
» We know that each sequence of decreasing natural numbers is finite and
converges to 0
Let xx be a state in the trace. Initially xk = x; (i.e. k =i.
Then, k increases to reach the suited state
When state x; is reached, then xx = x;
Here, the sequence j — k is a decreasing sequence

vVvyVvyy

@ This reasoning holds for any liveness property
@ Again this proof is an induction. We shall show that

> j— k is a natural number
» j— k is a decreasing sequence

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 53 /147

Requirements for a system modelling language

The values of state variables x belong to a set of licit VALUES
—> Require to define this of these sets

The events are relations on the set of states {evy,...ev,}

—> Require to define events as transitions from a state to another one
Invariants express, on traces, properties of the system

—> Require of a language to define such properties

Invariants are proven on traces
= Require a proof system (in particular induction)

© ©6 6 o o

The definition of less abstract traces allows to express properties "simpler" to
prove

= Require a refinement/abstraction operation which links abstract
traces to concrete traces of two systems ie.e simulation relationship

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 54 /147

Plan

@ The Event-B method
@ Refinement of Event-B machines

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Event-B method (J.R. Abrial). Overview

Event-B is a formal method for system development

@ It is based on
> Set theory and First order Logic
@ An Event-B model defines

> a state of the system to model
> an initialisation event and a set of events characterising state evolutions and
changes
> an invariant formalising the safety properties of a the system
> Other properties of the system e.g. liveness, deadlock freeness, determinism,
etc.
» A refinement operation allowing to describe a concrete system which refines
an abstract one.
* It allows adding design decision and precise information on the behaviour of the
system to design.
* It preserves the properties of the abstract system in the concrete system thanks
to a gluing invariant.

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 56 /147

Event based system modelling with Event-B : Modelling
Principles — Event-B

Event based systems modelling

Concurrents systems

Software, hardware (or both) systems

Refinement and proof

A system is seen as a state-transitions system

Refinement offers a decomposition mechanism of state-transitions systems
A simulation relationship links an abstract model and its refinement

Simulation is a requirement for refinement correctness

"Correct by construction" approach i.e. the system is explicitly correctly
built

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 57 /147

Model definition with Event-B

@ Models are defined incrementally
> A first/initial abstract machine is designed
> A sequence of refinement of an existing machine is designed incrementally
moving from an abstract level to a concrete level
@ Models rely on sets and constants defined in a context Event-B component.
The definitions are given by axioms and theorems may be introduced.
@ Three relations define links between Event-B components
» The sees relation expresses the use, by a machine, of constants and sets
defined through axioms and fulfilling theorems of a context
» The extends relation expresses the extension (enrichment of a context) by
adding new sets, constants, axioms and theorems

> The refines relation states that an Event-B model (machine) resp. event is
refined by another Event-B model or event reps.

[[[}

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 58 /147

Machines and contexts

Machine Defines the system mo-
del as a state-transitions (state
variables and events)

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

REFINES an other machine
SEES a context
VARIABLES of the model
INVARIANTS satisfied by
the variables (state)

THEOREMS satisfied by the
variables (state) and
deduced from invariants
and seen contexts

VARIANT decreasing

EVENTS modifying state
variables

Context It contains the defini-
tions of the domain concepts nee-
ded to model the system. It also
defines the proof context.

EXTENDS an other context
SETS declares news sets

CONSTANTS défines a list of
constants

AXIOMS defining properties
of sets and constants

THEOREMS a list of theorems
deduced from axioms

I \Ec o

=

Formal development of complex systems. 2020 59 /147

Event B contexts

CONTEXT
ctx Context
EXTENDS @ ac extends the context ¢ and adds
actx new concepts
SESTS @ s sets defined by comprehension or
CONSTANTS Intention
c @ k definition of constants
AXIOMS @ ax1 axioms defining sets and
axj ;... constants
THEOREMS @ T(x) set of theorems deduced from
Tci @ ... axioms and theorems.
END

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 60 / 147

Event B Machines

MACHINE
m
REFINES
am
SEES
ctx
VARIABLES
X
INVARIANTS
I(x)
THEOREMS
T(x)
VARIANT
v
EVENTS
evl = ...
ev2 = ...

END

Machine

@ m abstract machine corresponding

to the system model
am machine refined by m

c visible contexts of machine m.
They define the context '(m)

x variables defining machine
machine m state

I(x) Invariants de la machine m

T(x) Theorems deduced from the
context and invariant

v expression defining a decreasing
variant (either a natural number or

a set)

evl, ... list of machine events

describing state changes with at —
least an INITIALISATION event Dfﬁl

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 61 /147

Modification of state variables
@ State variables modified by actions or substitutions in events
o Different types of substitutions (variables modifications) are available
@ Substitutions are characterised by Before-After Predicates BAA

Skip Null/Empty Action

x:=E Becomes expression E (Simple Assignement)
x:€8S Becomes element of S (Arbitrary choice in a set S)
x:| P Becomes such that P (Arbitrary choice such that P
f(x):= E | Equivalent to f :=f < {x — E}

@ Substitution x :| P encodes all the other substitutions. Its BAA is P(x, x")
@ The previous substitutions can be extend to multiple variables modifications

Xty Xp | P

[[[}

=
@ x:| P and x :€ S are non-deterministic actions ancy

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 62 /147

Event-B : Events
@ Initialisation
» Definition initial values of state variables. x : |P
@ Modification of state variables with Before-After Predicates BAA
» BAA(x,x'). Example X' = x+ 1 pour x := x+ 1 or for x :| (x' = x+ 1)
@ Three types of events

svent 3 = event_3 =
event_1 = WHEN ANY
WHERE G
BEGIN G(x) (%)
x 1 |BAA(x, x") THEN THEN)
. ’ s
END - x 1 |BAA(x, x") x: |BAA(x, ', 1)
= END
Non guarded event
Guarded Event Parameterised Event

where
@ x is a (set of) variables
@ /is a list of parameters
@ G(x) is a boolean expression on state variables expressing a guard

e BAA(x,x’) and BAA(x, x’,) are before-after predicate recording =
Io=1 U
a state change

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 63 /147

Events. Definition of associated BAA

Event : E Before-After Predicate (BAA)

begin x : |P(x, x’) end P(x, x")

when G(x) then x : |P(x, x’) end G(x) A P(x,x)

any t
where G(t,x) It (G(t,x) N P(x,x',t))
then x:|P(x,x’,t) end

=0

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 64 / 147

Events. Definition of associated guards

Event : E Guard : grd(E)
begin S end TRUE
when G(x) then T end G(x)

any t where G(t,x) then T end || 3t.G(t,x)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

2020

T

65 /147

Machine Proof Obligations

Proof obligation

(INVI)

Invariant preservation at initialisation

(INV2)

Invariant preservation by each event

(DEAD)

Deadlock freeness

(SAFE)

Theorems shall be prove,

(FIS)

Events shall be feasible

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

2020

66 /147

Machine Proof Obligations

\ | Proof obligation

(INV1) M(s,c) F Init(x) = I(x)

(INV2) M(s,c) F I(x) A BAA(e)(x,x) = I(x')

(DEAD) M(s,c) F I(x) = (grd(e1) V ... grd(en))

(SAFE) M(s,c) F I(x) = T(x)

(FIS) M(s,c) F I(x)Agrd(E) = 3x".P(x,x")

[[|

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 67 / 147

Event based system modelling with Event-B : Modelling
Principles — Event-B

Components of an Event-B model
o Contexts

@ Machines

T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 68 / 147

Event-B models. Handling contexts

Contexts define theories associated to models.
@ Definition Of the theories required by system models

@ Contexts are imported by machines using the Sees Clause

Contexts
Context CO @ constants (c)
Sets s
Constants ¢ @ sets (S)
Axioms Ax(s, c)
Theorems Tc(s, ¢) @ Axioms AX(S,C)
End

@ Theorems Tc(s,c)

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 69 / 147

Event-B models. Machine definition

Machines define a state-transitions system.

@ Machines. Initial state + events (transitions between states).

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Machines : Variables (état),
Events (transitions),

Invariants I(s, ¢, xa), Theorems
T(s,c, xa)

Proof Obligations
Non determinism

Interleaving semantics with
stuttering

Traces correspnd to sequences of
event triggerings

Machine Spec
Sees CO
Variables x4
Invariants Inv(s, ¢, x4)
Theorems T(s, ¢, x4)
Events
Event Initialisation =
begin
xp :| Init(s, ¢, x
end ;
Event An_event = Any /
Where
Gpllis,cxp)
Then

xp 0l ACl(/,s,c,xA,x;l)

End
Event Another__event =
When
GGAls,c,xp)
Then

xp ACZ(S.C,XA,XA)

End

A

’

Formal development of complex systems.

iyl

2020 70/147

Event-B models. Machine definition
@ We recall the three types of Events

— Evenement_3 =
événement_2 =
— ANY |
événement_1 = WHEN
WHERE G
BEGIN G(x) G(, %)
x 1 |BAA(x, x") THEN ’
END x : |BAA(x, x") THEN
END ’ x 1 |BAA(x, x", 1)
END
Non guarded event
Guarded event Parameterised event

@ where
> x is a (set of) variables
> | is a list of parameters
» G(x) is a boolean expression on state variables expressing a guard
» BAA(x,x') and BAA(x, x’,) are before-after predicate recording
a state change

o Correspondence between an Event-B event and a TLA action (TLA-L.
Lamport)

@ Events describe a state-transitions system with interleaving il
semantics for events

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 71/ 147

Event-B proof obligations - Core POs (recall)

PO:s for theorems

A(s,c) = Tc(s,c)

A(s,c) AN (s,c,x) = T(s,c,x)

@ Invariant preservation PO

A(s,c) AN (s,c,x) N G(s,c,l,x) N BAA(s, ¢, I, x,x")
=I(s,c,x’)

o Event feasibility PO
A(s,c) AN (s,c,x) N\ G(s,c,l,x)
=3Ix".BAA(s, c, I, x,x")

Variant PO
| A(s,c) AI(s,c,x) A G(s,c,l,x) = V(s,c,x) EN |
o Variant PO

A(s,c) AN (s,c,x) A\ G(s,c,l,x) N BAA(s, c, |, x,x")
=V(s,c,x') < V(s,¢,x)

iyl

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 72 /147

Event-B proof obligations - Other POs
Other PO are added to the previous ones
o Deadlock freeness (DEAD) : disjunction of guards

> A single guard is true at each event triggering (Deterministic system)
> At least one guard is true at each event triggering (Non determinism)
» No gaurd may be true at event triggering (The developed system may
deadlock)

o Liveness and reachability (LIV) Leads_to or P ~~ Q or
when
P
then

Q

Similar to Liveness in temporal logic. For example, in LTL with leads__to
noted ~- operator or ¢

@ Refinement

» Preservation of the invariant thanks to the introduction of a gluing invariant

» Do not allow an event of refined machine to be triggered infinitely many times
(use of a variant). This a livelock

» The refined system does not deadlock more than the abstract one ——
o il

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 73 /147

An example

contexts
data
sets
MESSAGES
AGENTS
DATA
constants
n
infile
axioms
axml:n €N
axm2:n#0
axm3 : infile € 1 .. n — DATA
end

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

An example (cont.)

MACHINE agents
SEES data
VARIABLES
sent INITIALISATION
got BEGIN
lost actl : sent .= &
INVARIANTS act2 : got := &
invl : sent C AGENTS x AGENTS act4 : lost := &
inv2 : got C AGENTS x AGENTS END
inv4 : (got U lost) C sent
inv6 : lost C AGENTS x AGENTS
inv7 : got N lost = &

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 75/ 147

An example (cont.)

sending a message

ANY
a
b
WHERE

grdll : a € AGENTS
grd12 : b € AGENTS
grdl: aw— b ¢ sent

THEN

actll : sent := sent U {a — b}

END

getting a message
ANY
a
b
WHERE
grdll : a € AGENTS
grd12 : b € AGENTS

THEN

END

grd13 : a — b € sent \ (got U lost)

actll : got := got U {a — b}

loosing a messge
ANY
a
b
WHERE grdl:a € AGENTS
grd2 : b € AGENTS
grd3 : a+— b € sent \ (got U lost)
THEN
actl : lost := lost U {a — b}
END

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

2020

iyl

76 /147

Another example

@ An example of
specification.

@ A single event selection

Machine M1
Variables P, carts, selection_done
Invariants
P C PRODUCTS
carts C SITES x PRODUCTS
selection_done € BOOL

Context CO
Sets
PRODUCTS, SITES

selection_done = ran(carts) = P
Vp, p € ran(carts) = card(carts ~1[{p}]) = 1
Events
Event initialisation =
P :€ P(PRODUCTS)
carts := &
selection_done := FALSE

@ Many refinements are
possible

Y. AIT-AMEUR, N. SINGH (IRI

/INPT-ENSEEIHT {

Event selection =

Any someCarts

‘Where
someCarts C SITES x PRODUCTS
ran(someCarts) = P
Vp, p € ran(carts) = card(cartsfl[{p}]) =1

Then
carts := someCarts
selection_done := TRUE

End

End

Formal development of complex systems.

2020

iyl

77 /147

Refinement in Event-B

o New events may appear.

> They refine the Skip event
> Definition of a simulation (weak) relation

@ The concrete events (refined events) shall not introduce more deadlock
than available in the abstraction
@ The set of new events may lead to liveness (due to stuttering)

> Need to use a decreasing variant to allow triggering of the abstract events

@ The abstract model use variables x while the concrete ones use variables y,
then

> a gluing invariant J(x, y) shall link abstract and concrete variables x and y

@ Each abstract event is refined by a concrete event

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 78 / 147

Refinement in Event-B. Proof obligations

Guarded events
Let us consider an abstract event and the corresponding refining concrete event

such that

EVENT = EVENT =
when when
G(x) H(y)
then then
x = E(x) y == F(y)
end end

Invariant preservation proof obligation
Let /(x) and J(x, y) be the invariants , then we need to prove the refinement
invariant preservation as

I(x) A J(x,y) ANH(y) = G(x) AJ(E(x), F(¥))

=1

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 79 / 147

Refinement in Event-B. Proof obligations

Parameterised events

Let us consider an abstract event and the corresponding refining concrete event
such that

EVENT = EVENT =
any Vv where any w where
G(x,v) H(y,w)
then then
x 1= E(x,v) y := F(y,w)
end end

Invariant preservation proof obligation

Let /(x) and J(x, y) be the invariants , then we need to prove the refinement
invariant preservation as

I(x) A J(x,y) A Hly,w) = 3v.(G(x,v) A J(E(x, V), F(y,w)))

=1

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 80 /147

Refinement in Event-B. Proof obligations

New events
Let us consider a new event refining the skip event as follows J
EVENT =
EVENT — Whljlz)
SKIP y
then
end]
y == F(y)
end

Invariant preservation proof obligation

Let /(x) and J(x,y) be the invariants , then we need to prove the refinement
invariant preservation as

1) A Joy) A Hy) = J(xF(y) |

Remark. In Rodin, no need to declare the event Skip of the abstraction. il
By default, any new event refines the Skip event.

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 81 /147

Refinement in Event-B

Context C1

Extends CO

Sets s

Constants ¢,

Axioms A(s, ¢, sr, cr)
Theorems Tc(s, ¢, sr, cr)
End

Extension of Contexts.

Machines are refined.

New variables.

°
°

°

@ New events.
@ Gluing Invariants.
°

Refinement Proof
Obligations.

Y. AIT-AMEUR, N. SINGH (IRI

/INPT-ENSEEIHT {

Machine Spec_Ref
Refines Spec
Sees C1
Variables y
Invariants Invy(s, ¢, sy, cr, X, y)
Theorems T, (s, ¢, sr, Cr, X, y)
Events
Event Initialisation =
begin
y i1 hit(s, ¢, y')
End ;
Event An_ event_ ref
Refines An_event =
Any e
‘Where
Gl,(e,s,c,s¢,¢r, ¥)
Then
y :| ACl,(e,s,c,sp,¢cr, y,y')
End
Event Another__event_ref
Refines Another__event =

When
G2r(s,c,sr,cr, ¥)

Then
y il AC2(s,c,sr.¢cr, yiy')

End

Event New_event

When
G3r(s,c,sr,cr,)

Then
y i1 AC3(s,c,sr.cr, y.y')

End

End —\u
=20

Formal development of complex systems.

2020

82/147

Witnesses are helpful in refinement

Back to parameterised events
The refinement of the left event by the right one

EVENT = EVENT =
any v where any w where
G(xv) H(yw)
then then
x := E(x,v) y := F(y,w)
end end

produces existential proof obligations.

Example : Existential proof obligation for INV preservation

I(x) A J(x,y) N H(y,w) = Jv.(G(x,v) A J(E(x,v), F(y,w)))

Their proof, usually consists in producing witnesses W for the existentially
quantified parameter using the following proof rule.

M= 3x.A
TriEgA (B3

V.

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020

83/147

Witnesses are helpful in refinement : Example

Explicit witnesses in a refinement

A refinement offers the capability to give a witness (WITH Clause) in order
to help the prover to discharge the proof obligation.

Example
EVENT = EVENT =
any n where WITH
n € NAT n:n=4
then then
X:=n x:=4
end end

The witness helps to prove the existential proof obligation.

iyl

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 84 /147

Complete representation of Event-B components

WHERE GA(x*, o)
THEN

x4 BAPA(aA,xA,xAI)
END

Context Machine Refinement
CONTEXT Ctx MACHINE MA MACHINE M¢
SETS s SEES Ctx REFINES M4
CONSTANTS ¢ VARIABLES x* VARIABLES x¢
AXIOMS A INVARIANTS /4(x*) INVARIANTS J(x*, x€)
THEOREMS T. || THEOREMS Tpen(x*)
END VARIANT V(x*) EVENTS

EVENTS EVENT evt®

EVENT evt? REFINES evt”

ANY o ANY o€

WHERE G¢(x¢, o)
WITH

X ot W(ah, af, x4, x
THEN

x€ : BAPC(aC,xC,XU)
END

Ar

(a)

TABLE — Event B : Context, Machine and Refinement components

(b)

(©)

Note the presence of the WITH clause introducing witnesses using a
before-after predicate for the variables and the parameters.

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

2020

[[[}

=

85 /147

Refinement Proof Obligations

(6) Initialisation | AA G¢(aC)
(INIT) AW (oA, aC, xV x¢")
/\BAPC(aC,xCI) = J(XA/,XC,)
(M Invariant AN GE(xC,a%)
preservation | AW(a?, aC, x4 x x¢ x¢)
(INV) ABAPS (xS, aC, xS)A
IA(xA) A J(x*, x€) = J(x*, x€)
(8) Event AN GE(xC,a%)
Simulation | AIA(x?) A J(xA, x€)
(SIM) AW (A, aC, xA, xA xC x<")
/\BAPCE\XC7QCZ\XC,;’)
= BAP"(xa,a”, x™)
(9) Guard ANTAAY A J(xA, x)
Strengthening | AW/(a?, ¢, xA, x* x¢ x¢)
(GS) AGE(xC,af) = Ga(xA, o)

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

TABLE — Refinement Proof obligations

Formal development of complex systems.

2020

I \Ec o

=

86 /147

Refinement in Event-B. An example

Introduction

@ The objective is to design an information system to manage orders and
invoices

To issue an invoice, the state of an order shall be changed (moving from
state "pending" to "invoiced").

On an order, only one reference to an ordered product is available together
with a quantity. Quantity may be different from an order to another.

A given product reference may appear on several orders.

006 o0 o

The state of an order moves to "invoiced" if the ordered quantity is less or
equal to the quantity of available products in the stock.

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 87 /147

Refinement in Event-B. An example

The following cases shall be considered.

Case 1

All the order references are available in the stock. The stock and the orders may change
and evolve due to

@ arrival of new orders or cancellations of orders
@ the supplying of products with new quantities added to the stock

But, we do not have to take these entries into account. This means that you will not
receive two entry flows (orders, entries in stock). The stock and the set of orders are
always given to you in a up-to-date state

Case 2

We shall take into account

@ arrivals of new orders
@ cancellations of orders
@ arrivals of new quantities added to the stock

End of case study

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 88 /147

Refinement in Event-B. An example

model

Casel
sets

ALL_ORDERS; PRODUCTS
properties

ALL_ORDERS # &
variables

orders, stock, invoiced_orders, reference, quantity
invariant

orders C ALL_ORDERS A

stock € PRODUCTS — N A

invoiced_orders C orders A

quantity € orders — N* A

reference € orders —» PRODUCTS
initialisation

stock, invoiced__orders, orders, quantity, reference := PRODUCTS x {0}, @, &, &, &
events

END

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 89 /147

Refinement in Event-B. An example

invoice_order =
ANY
o
WHERE
o € orders — invoiced_orders A
quantity(o) < stock(reference(o))
THEN
invoiced_orders := invoiced_orders U {o}
stock(reference(o)) := stock(reference(o)) — quantity(o)
END;

delivery_to_stock =
BEGIN
stock : | (stock’” € PRODUCTS — N)
END

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 90 / 147

Refinement in Event-B. An example

cancel_orders =
BEGIN
orders, quantity, reference : | (orders’ C ALL_ORDERS A
invoiced_orders’ C orders’ A
quantity’ € orders’ — N* A
reference’ € orders’ —s PRODUCTS)
END;

new_orders =
BEGIN
orders, quantity, reference : | (orders’ C ALL_ORDERS A
invoiced_orders’ C orders A
quantity’ € orders’ —s N* A
reference’ € orders’ —s PRODUCTS)
END;

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

2020

iyl

91/147

Refinement in Event-B. An example

model
Case2
refines
Casel
variables
orders, stock, invoiced_orders, reference, quantity
initialisation
stock, invoiced_orders, orders, quantity, reference := PRODUCTS x {0}, &, 9, &, &
events

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 92 /147

Refinement in Event-B. An example

cancel_orders
Refines cancel_orders =
ANY
o
WHERE
o € orders — invoiced_orders
THEN
orders := orders — {o}
quantity := {o} < quantity
reference := {o} < reference
END;

new_orders

delivery_to_stock Refines

Refines delivery_to_stock = ANY

ANy 0,q,p
p,n WHERE

WHERE
p € PRODUCTS g€ N*
neN

THEN THEN
stock(p) := stock(p) + n

END

END

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

END;

new_orders =

o € ALL_ORDERS — orders
p € PRODUCTS
orders := orders U {o}

quantity(o) := q
reference(o) := p

Formal development of complex systems.

2020

iyl

93 /147

Refinement in Event-B. Methodology

Some methodological principles
@ Find the right abstraction at the right abstraction level
@ Define a refinement strategy
» What are the refinement steps for a development?
o Write the right invariants and this, the right properties
» Model animation can help to identify the invariant
Caution

@ Introduce properties at different refinement levels, when their expression
becomes possible

@ Take advantage from refinement in order to ease the proof process

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 94 /147

Structure of an Event-B development

@ A machine models

> the static part of a system i.e. state with state variables
> the dynamic of a system i.e. set of events

@ The properties, formalising requirements, are described in the INVARIANT,
THEOREM, VARIANT

> safety

deadlock freeness
function of the system
reachability,

etc.

vVvyVvVvyy

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 95 /147

Structure of an Event-B development

A set of machines linked by a refinement relationship (simulation)

@ Expressed requirements are handled incrementally during the refinement
process

o Contexts are extended each it is necessary to introduce new definitions and
axiomatisations of needed concepts

@ The SEES clause makes contexts in a machine

@ Development activities : modelling, refinement, proof, animation, exhaustive
verification, code generation, close loop modelling, etc.

@ Event-B method handles the development of complex systems

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 96 / 147

Plan

@ Proof with Event-B
@ Proof activity
@ Proofs with Event-B and the Rodin platform

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

Proof in logic

Proof strategy for a sequent S
o Let

. . A
» A collection T of inference rules of the form Tr

> A sequent container K, containing S at initialisation

While K is not empty
e CHOOSE an inference rule %r in T such that its conclusion
Cisin K
e SUBSTITUTE C in K by the hypotheses A (if there are)
End

@ The proof succeeds when K becomes empty
@ The proof is said to be Goal Oriented
The result is a Proof Tree

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 98 /147

The Proof Tree

5,53, 5

r3 inference rule
S

Let us consider

S1
r3

AN
52 53 S4

@ Inference rule r3 is applied to the sequent S1
@ This rule produces the sequents S2, S3, and S4

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 99 /147

The Proof Tree. An example

Let us consider the following inference rules

523 533 S4 57
5—1r1 54 I’2 52 r3
S5, S6
55 r4 5—3r5 56 I’ﬁ
5—7r7
Our objective is to prove the sequent S;
N
S1
rl
YR
52 S3 RY/!
? ? ?

T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 100/ 147

The Proof Tree. An example

Let us consider the following inference rules

527 537 S4 57
5—1r1 3, r2 5 r3
557 56
5—5r4 53 |’5 56 r6
S, r7
Our objective is to prove the sequent S;
4
S1
rl
YRS
52 S3 RY/!
r3 r5 r2
sl
Ss Se S;
rd r6 r7 il

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 101 /147

Plan

@ Proof with Event-B
@ Proof activity
@ Proofs with Event-B and the Rodin platform

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

Proof in logics
A proof in sequent calculus is a tree.
o L'application of inference rules ~~ a proof tree.
@ Two types of reasoning
» Forward reasoning.
Top-Down Application of inference rules %¢
» Backward reasoning.

A
Bottom-Up Application of inference rules el 1T

@ Building the proof tree represents the proof activity
» Automatic building the proof tree using automatic provers

* Examples : Predicate provers, reasoners, SAT or SMR Solvers, static analysis,
etc.

> Interactive application of inference rules or deduction rules available in proof
assistants

* Examples : CoQ, Atelier B, Rodin, Isabelle/HOL, etc.
» Mixed building of the proof tree combing both automatic and interactive

proofs
> * Use of proof tactics with CoQ, Atelier B, Rodin, Isabelle/HOL, TLAPS w—pu=—
etc. D-’\d—NI—L

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 103 /147

Prover Interface : A Tree and a Palette of buttons the
inference rules

rl b r8 b

r2 r2 S1

r3 ? Utilisation (Press) | r4 rl

rd rl r6 v N\

PP PP S3 Sa

pr pr ? ? ?
We may use

o Inference Rules (r;)
@ Automatic provers like pr, pp or SMT, etc.

T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 104 / 147

A Difficulty : Size of the window

r8
r2
r4
r6
PP
pr

?

N
S3
?

Y

pp
then

rb

The previous interface is not well adapted

r5
r4
rb
r9

PP
pr

S2
pp

?

N
S3

rb
e
S6

?

54
?

o Les Sequents are usually of big size (many hypotheses)

@ The Proof Tree may be very deep

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

2020

105/ 147

Current form of a sequent

In general, sequents issued from Proof Obligations are of the following form

HFL=—G

@ Conclusion is usually an implication
@ G is Goal is a predicate, usually a non-conjunctive

o L is the set of so-called local hypotheses (may be an empty set)

General form of a sequent for the proof of invariant

H F I(x) A G(x) A P(x,x") = I(x)

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 106 / 147

A possible solution : Use of two windows

- A Tree Window with simplified sequents (goals only)

- Sequent Window containing the ‘ complete sequent of interest ‘

G1
rl
H2 - [2 = G2 N
(2] 63 G4
r2 r4 r6 pp pr ? ? ?
Fenétre Séquent Fenétre Arbre

T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 107 / 147

A proof step

Gl
rl
H2 + L2 = G2 N\
(2] 63 G4
r2 r4 r6 pp pr ? ? ?
Use of (Press) pp
Gl
rl
H3 + L3 = G3 VAR
G2 G4
r2 vr5 r8 pp pr PP ? ?

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

More realistic windows

H3

L3

G3

r2 r4d r6 pp pr

rl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

More elaborated sequents

hidden ; searched ; cached I+ local = goal

list__of _hypotheses conclusion

hidden Non visible in the sequent window
searched Visible after search in hidden

cached Visible but is no more part of the conclusion

local Visible and part of the conclusion

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 110/ 147

Plan

e The Rodin Platform
=0

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Rodin Platform

It is an application developed on Eclipse for the management and development of
system models supporting verification of system model correctness.
Download http://www.event-b.org

Rodin Platform and Plug-in Installation

Rodin platform

..

..

Requires Java 1.6

Download the Core: Rodin Platform file for your platform. To install, just unpack the
archive anywhere on your hard-disk and launch the “rodin” executable in it.

Start Rodin

Information on the latest release.

Plug-ins

.

..

-

Plug-ins are installed from within Rodin by selecting Help/Install New Software. Then
select the appropriate update site from the list of download sites.

Details on plug-ins.

Install the Atelier B Provers plugin from the Atelier B Provers Update site to take full
advantage of Rodin proof capabilities

Install the ProB plugin from the ProB Update site for powerful model checking and
animation

User manual and
Tutorial

.

Rodin Handbook

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020

iyl

112 /147

http://www.event-b.org

The Rodin Platform. Launching Rodin & definition of
Workspace

Workspace Launcher

Select a workspace
Rodin Platform stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: /Users/neerajsingh/Neeraj/Workspace/Rodin/Workspace3.2 |V Browse...

Use this as the default and do not ask again

Cancel OK 5@]’[-?

P

NSEEIHT { Formal development of complex

INGH (IRIT/INP

AIT-AMEU

The Rodin Platform. The Rodin interface (GUI)

Toolbar

Editor View

Outline View

& [EventcB| BiiProB @ Prfuing (25 Resource

E EventBExp 3 ~ O QMO Q@MOX = B g outline % =0
oo & < HACHTNE An outine is not ajailable.
J Eh)] EJ‘E BL % This 1s an sbstract Yodel that shovs only possible changing states of the rovers. J
sees
Event-B »care2)
Explorer > iARPIRT VARIABLES
» S ARPN 2 o Physical Unit: Inferred Physical Unit: A set of Live rovers
» CARPN.G o mr Physical Unit: Inferred Physical Unit: A set of soving rovers
v & ARPN_7_Mociified o rr Physical nit: Inferred Physical Unit: A set of resoved rovers
S0 o ir Physical nit: Inferred Physical Unit: A st of initial rovers that join the set of 1y
o cr Physical nit: Inferred Physical Unit: A set of conflict rovers
>Qct o s Physical Unit: Inferred Prysical Unit:
»Qc2 o br Physical Unit: Inferred Physical Unit:
»Qc3 INVARIANTS
»rQca o iml: rgRnot theorea
»@cs o im2: argRnot theores »
» @06 o invé: rrc R not theores »
- o ims: irc R not theores »
Lo o e SN
> M2 = =
,g M3 ® Proof Information 52 B ¥ Symbols 2 = Progress a
:gm Proof Information s not avalable: s s unw oo
oMo e = AV 3%z 2c
"o DEERERRRR
» Bank [Z Rodin Problems 52 [Properties | Tasks [Statistics » v=a =1 R =
> & binary_search 3 rors, 19 warnings, 0 nfos B O A O O
Description ~ Resource Path Location ~T=
> (> Correct by Construct | & errors (3 itess) ALK Tls
> S CRT Heart Closed_L¢|| 5 i Warnings (19 itess) ol

» (= CRT_Pacemaker_Rod
» (= CRT_Pacemaker_Rod
» ECG_Interpretation_2
» & Example

> & HeartModel4
I=thpaviring

u |
Rodin problmes View Symbol View D@I‘IT

{ Formal development of complex systems

The Rodin Platform. Creating a new Project)

File > New > Event-B Project

New Event-B Project

This wizard creates a new (empty) Event-B Project in the current Workspace

Project name: NewProject

Add project to working sets

Working set:

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Cancel

Formal development of complex systems.

Finish

iyl

2020 115 /147

The Rodin Platform. Creating Event-B Components

File > New > Event-B Components

New Event-B Component

This wizard creates a new Event-B component (machine, context, etc.) that can be opened by a multi-page editor.

Project: NewProject Browse...
Component name: changeMe
Please choose the type of the new component
© Machine
~ Context
® Cancel Finish

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

iyl

2020 116 / 147

The Rodin Platform. Construction of contexts (Context
component)

Wizards

Event-B - NewProject/c1.buc - Rodin Platform - /U

b Event-BExp 2 — B @Mo @MO @ *changeMe (@ *c1 SZL

BB E BL - S
] | @ END

- A%
»Pc2
»@c3
»@ca
»@cs
»@ce

- Vel .

=

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Rodin Platform. Construction of contexts (Context
component) with Wizards

Identifier | setl Label(s) Predicate(s) Theorem
Element axal a
Element axm2]
Element axm3]

More Element Cancel oK More Cancel oK

| —

FIGURE — New sets (Enumerated Set) and new axioms (Axioms)

Identifier |set1
Identifier | cst1

Identifier
Identifier Axiom |37 GEl0 not theorem
More Cancel OK Add More Axm. Cancel OK
FIGURE — New sets (New Carrier Sets) and constants definitions (Constants) EE\II_TI

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 118 /147

The Rodin Platform. Rodin Editor for contexts
components (Context)

< EXTENDS @&
— SETS @&
<+ & setl i
<> CONSTANTS @&
o & |cstl i not symbalic Physical Unit:

- AXIOMS &

& @ |aml| ; [T not theorem i

END

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Rodin Platform. Building Machines

Wizards

Event-B - NewProject/changeMe.bum - Rodin Platform

b Event-BExp % — B @m0 @ Mo (@ *changeMe 2 @ *c1
= . 4B I < MACHINE
. lb le \']B changeMe >
J I Jo EVENTS
P@C2 o INITIALISATION: not extended ordinary >
END
»@cs3
»Ica END
»@cs
»@ce
- Yatd .

iyl

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Rodin Platform. Building Machines with Wizards

Identifier |varl
Initialisation |act1 vari =
Invariant L eI not theorem Expression
Add More Inv. Cancel oK Cancel oK

F1GURE — New Variables, Invariants and Variants

Label(s) Predicate(s) Theorem

inv1]
inv2]

inv3]

More Cancel oK

FI1GURE — Adding Invariants

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 121 /147

The Rodin Platform. New events (Events)

New Events
Label Parameter identifier(s)
CES [] [] [
Guard label(s) Guard predicate(s)

[| not theorem

[| not theorem

[! not thearem
Action label (s) Action substitution(s)
Jact1] []
=] []
[acts] []

Add More Par. More Grd. More Act, Cancel oK

FIGURE — New Events)

iyl

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Rodin Platform. Rodin Editor for the Machine
component

[» REFINES &
[SEES @
<7 VARIABLES &
o & varl i" Physical Unit:
< INVARIANTS &
4 @ dwl [T not thecrem I
[VARIANT &
< EVENTS &
[4 & INITIALISATION |not extended |7 ordinary [T
< & @& ot notextended [T ordinarv [Y f/
<7 REFINES &
= AN &
7 WHERE @&
< WITH @&
== THEN &
END
- u -
o I

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Rodin Platform. Proof support

The RODIN Prover

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

The Rodin Platform. Interface (GUI) of the Rodin Prover

Proof Tree

Name of POs Selected

Hypotheses

Event-B
Explorer

=8 ows ruﬁ =
w7 s Move_tb_Move/inv1/INV

ewso]

1o zsczoneset
s = v = et st o)
s e poseia. fun(nass (x) = v » max(brake(x))}

sczoneset »

nass(x) v » max(brake(x) edontca. fun) &
Ca_25enew o - e, poseca.funiass(x) » v = max(brake(x)})

[
o
e o e e, e = oo
@ rrivom na_ssczoneset

vi-
e vrram
-mzmsuunlyl)u,xsua,xs

Selected Hypotheses
[Goal 2

nowetinestepeTine

Statistics (£ Rodin Problems

&-Q P

Search hypotheses

Goal
Proof Control

N. SINGH

IRIT/INPT-ENSEEIHT { Formal development of complex systems

[Ay P—

o o soporalGraTIRD
@ Move.to_ Move/grd 11/GRD.
@'Move_to_ Move/act9/SIM

@Move_to_ Movelact10/SIM

@'Brake_to_Remove/gra3 WD

Sy fSea R Coc BRU = O

p
100 — 1050t
pe——

v n
F1eR 5 268 1 r1or2
ven
fscrvaan
* e

s i brez min b0
x brez & nax broatn b

broke poversain b . ax br

Search Hypotheses

iyl

The Rodin Platform. Interface (GUI) of the Rodin Prover

Interface (GUI) for an unsuccessful proof

ene Proving - ARPN_7.
- || ® #cws iren [Fomta] e
I Proof Tree 1] GEEB =0 QM5 Q@M Ok Event-B Explorer =8
v sutnstien e Move_to_Move/lnva/INV 0 HE BT~
v0) generatized we
v(7) simplifcation rewrites Jemén D — :
¥ 2 generatized N Start_to_Move/grd 10/GRD
¥(7) simplification rewrit o xedonispeed at) 'Start_to_Move/act9/SIM
¥ type rewrites o speed ateR 2 xZ ¥'start_to_Move/act10/SIM
V@ atmlification reurites o {85,k Sexnfedon (Position)afenoertinestepakenew pos | 4w (5 » KIIUGL, ke der \ Yove.to.
7) e vith pos(,],k iexntedon(Position Move_to_Move/grd11/WD
V7 ehith speddg W . 140 011» K0, kedar \ (xpadadontspesd_at)ajend Move_to_Move/grd13/WD.
V() eh with dazsenew pos . NewPO i new pos . new poseda fun(mass(x) » v w max(brake(x)))cZoneSet ¥Move_to_Move/grd15/WD
g o e R
epeTin G new.pos . new poseca.fun(aass(x) v w max(brake(x)))cnew_pos . new poseLa.fun(sass(x) = v max(t Move_to_
1 new_posenew_pos . new_poswwa.fun(aass(x) v » sax(brake(x))) Mova_to_ Move/inva/INV
Move_to_Move/invs/INV.
1 new.pos . new posewo_fun(aass(x) v » max(brake(x)))cZoneset Movto_Move/grd7/GRD
o ewpos . new_poswwo_fun(aass(x) » v » sax(brake(x))Jnew_pos . newposeca_fun(sass(x) » v » max(t Move_to_Move/grd11/GRD
o vy
yerner a -y

PrJ2(Position(y))enew_pos . new_posswa_fun(sass (x) = v » sax(brake(x)))unew pos . new_poseco || <

VASy [¥Sea R :iCac BRu =0
Selected Hypotheses

YR
° Y
% Goal 21 TR qmvmz’ms.m
nowtinestepeTine
o Ptinestepes TdeR — IdSet
osseh — N
Vi .
F1eR » 268 r1er2
 Proof Control &2 Statistics (£ Rodin Problems vee e o) vadte2)
[RE Do B @ v B PR o Qe | Y w i brez 4 min brs

" max breZ & max bromin b
Tactic applied successtully
=

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { rmal development of complex systems

The Rodin Platform. Interface (GUI) of the Rodin Prover
View of the Proof Control

External External

Prover(ML/PP: Cache Next Pending
(ML/PP) Lemma Prover(ML/PP) T Prover ubaoa)

S
i Hypotheses Previous
Prover Review Auto-Prover Reduce to classic
newkP Lasoo Event-B language Backtrack Undischarge PO " Next Reviewed
Sub goal
& Pryof Cont Statist din Proflems
e Qv >

@Y :
/ i rune Search

Editing Area Proof by Cases Add Polymorphic Hypothese Next

Run Post-tactics theorem ;i !
(Dis)Prove . Default Tactic Undischarge PO
with ProB Abstract Expression gacktrack 9

Metaprover |sabelle

Proof Information

.‘:\-LTI

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 127 /147

The Rodin Platform. Interface (GUI) of the Rodin Prover.

Search of Hypotheses

) sy ‘[{’Sea SZ‘E_?Cac @Ru = 0O
q?"ﬁ_f -
om0
ct Y x
xer \ rr
=

[<]

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

now » Pos(x)=Position(x)

speed_ater — Time x N

ank
XEr

=
now » speed(x)=speed_at(x)

xemr

na_zscZoneSet

wa_zscca_zs

ca_zscia_zs

new_posewa_zs

poer \ rr — Time x ZoneSet
po={i,j,k+i=xaiedom(Position)Aj=now
sper — Time x N ﬁ@]‘?

Formal development of complex systems.

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The information perspective on proofs

@ Proof Information 5% =0
act2: mr = ar \ {x}
)

o Event in M1
Moves_to Stop by Controller:

REFINES
Moves_to_Stop_by_Controller

ANy
x, ia_zs, wa_zs, ca_zs, na_zs, new pos

WHERE
grdl: x € ar
grd2: ia zs c ZoneSet
grd3: ca zs c ZoneSet
grdd: wa zs c ZoneSet
ardS: na zs c ZoneSet
grd6: 3y- yer\rr a y2x A Posly) € (wa_zs u ca_zs)
grd7: wa_zs ¢ ca_zs
grd8: ca zs ¢ ia zs
ard9: new pos € wa_zs

THEN
actl:
act2:

act3: ia = ia = {inj|jeia 25 A i=x}
acta:

a « {inj|jeca zs A i=x}
actS: wa = wa = {inj|jewa 25 A i=x}
actb: na = na = {inj|jena zs A i=x}
act7: Pos(x) = new pos

END
o Invariant in M1

u |
inv7: Vx- xer a x € rr = ran({x} < wa) c ran({x} < ca) D@rl

N. SINGH

IRIT/INPT-ENSEEIHT { Formal development of complex systems

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The used Types perspective

Symbols (@ Type Env 82 (@ RuleDet = B

Identifier Type

Pos P(RxZ)
Pos' P(RxZ)
R P(R)
ZoneSet P(z)
br P(R)
ca P(RxZ)
ca' P(RxZ)
ca_zs P(Z)
cr P(R)
ia P(RxZ)
ia' P(RxZ)
ia_zs P(Z)
ir P(R)
mr P(R)
mr' P(R)
na P(RxZ)
na' P(RxZ)
na_zs P(Z)
new_pos z

r P(R)
rr P(R)

- =T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 130/ 147

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The used inference rules perspective

Symbols () Type Environment @ Rule Details X =8
Rule: PP

Input Sequent:
-x0err
xemr
Vx:xera-xerr=ran({x} < wa)cran({x} < ca)
ca_zscZoneSet
ca_zscia_zs
wa_zscca_zs
new_posewa_zs
Jy-yer \ rra-y=xAPos(y)ewa_zsuca_zs
ia_zscZoneSet
na_zscZoneSet
x0er
wa_zscZoneSet
+ ran({x0} < (wa<{i,j-jewa_zsai=x | i » j}))cran({x0} < (ca<{i,j-jeca_zsai=x | i » j})

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 131 /147

The Rodin Platform. Interface (GUI) of the Rodin Prover.

The preference perspective for tactics (Auto/Post)

> General
VEvent-B
» Modelling Ul
Proving Ul
¥ Sequent Prover
Auto/Post Tactic
Meta Prover
» Help
» Install/Update
¥ Isabelle for Rodin
> ProB
» Run/Debug
> SMT
> Team

Auto/Post Tactic

PR

Customize Event-B Tactics...

Auto-Tactics
v Enable auto-tactic for proving

Tactic profile to be used for auto-tactics

Post-Tactics
v Enable post-tactic for proving

Tactic profile to be used for post-tactics

Configure project specific settings... |

Profiles
Default Auto Tactic Profile <
Default Post Tactic Profile <

Cancel

OK
)

)

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

Formal development of complex systems.

IENIT

2020 132 /147

Plan

iyl

© Animation of Event-B models
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

Animation of Event-B models. Use of model checking

@ The Rodin platform is equipped with a model checker offering the capability

to
» animate Event-B models at all refinement levels

» model check properties expressed in temporal logic

Benefits
@ Exhaustive verification if the models are finite
@ Assistance to the design of Event-B models by identifying counter-examples

I \Ec o

=

2020 134 /147

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

Animation of Event-B models. Use of model checking

The ProB model-checker

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 135 /147

Animation of Event-B models. Use of model checking.
What is ProB?

A useful tool for analysing and debugging Event-B models.

= It is required to bound models (if they are not) to use ProB

A list of
Events

States

to_Re
‘5top_to_Remove.by.Controller
©Moves_to_Stop_by_Controller

‘SRandomConfict
» INTIAUSATION

b EventBExplor 8 1 Rodin proviem

LR kg

Error Status ﬁ@'?

P

IT-AMEU

SINGH (IRIT/INP

NSEEIHT {

rmal development of complex systems.

Animation of Event-B models. Model checking with ProB?

Rodin Platform > Preference > ProB

> General
»Event-B
Help
> install/Update
> isabelle for Rodin
ProB
ProB (Dis-)Prover
ProB Classic
> Run/Debug

»Team

ProB

ProB Settings.
MAXINT, used for expressions such as xx::NAT (2147483647 for 4 byte ints)

ions such as xx:INT (-2147483648 for 4 byte i
deferred sets in SETS section

MININT, used for expre:

s)

Size of unspecif
Max Number of Initialisations Computed

Max Number of Enablings per Operation Computed

Lazy expansion of lambdas and set comprehensions (SYMBOLIC)

Use CLP(FD) solver for B integers (restricts range to -2%28..2°28-1 on 32 bit machines)

Use CHR based solver. Should speed up detection of unsolvable predicates, but might slow down solving in general.
Enable SMT-Mode (aggressive treatment of : and /: inside predicates)

Enable CSE (Common Subexpression Efimination)

Apply CSE (if enabled) also to predicates

Apply CSE (if enabled) also to substitutic i bodies))

Apply CSE (if enabled) only to well-defined sub-formulas

Use static ordering to enumerate constants which occur in most PROPERTIES first

Use more aggressive COMPRESSION when storing states

Symmetry Mode: off flood,canon,nauty,hash

multiplied by a factor for other computations)

‘Time out for computing enabled transitions (in ms,

Use PROOF information to restrict invariant checking to affected clauses.

v ions (e.g. applying functi ide of domain),
How many levels of refined models are animated by default
Allow ProB to proceed even if only part of the CONSTANTS have been found.
5 if axi i pattern
Apply translation to KODKOD on PROPERTIES when loading machines
Translate only complete components to KODKOD.
i jons of set i

Randomise enumeration of variables.

Restore Defaults

Cancel

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

Apply

=T

2020 137 /147

Animation of Event-B models. Model checking with ProB?
Verification of Invariants

@ Enable Events

@ Check Invariants

ittt i J| 8 # creno [pos] 2 proven Rysoure
) Events 53 =8 mseexn 4 #3= 0 MHstoy X mEent CPopert = O
Crodes + T e B B e e | ame e
s uarats o
¥ Adding.Rover W
 Surttoiove w o
©Move_to_Move
OBrake_to_Remove "
-t Romove.by.Catrollr 5
St by Contoler < omuas
. St

o R aote
‘Adding Rover... (R1,R2)
INITIALISATION {R1,R2)
o ®/D (uninitalised... {R1,R2)

o

o
ir R/
o

o
©Moves.t

i

©Conflct_to_Stop R

©Conflct_to_Brake invariants.

©5top._To_Move_by.Controller Vit (mew (v (sru (.
ve Vit o (men (0 (sr 0 (or.

R1R2)
Srake_To
» RandomConflict R

E Event-B Explor & (1 Rodin Provlen = 8

e BEBE
|

> EARR2

» & ARPN 6
v & ARPN_7_Modified
»@co

-4 bern (mrnsn =0

iyl

N. SINGH

IRIT/INPT-ENSEEIHT { Formal development of complex systems

Animation of Event-B models. Model checking with ProB?
Guards Checking

@ Guards Checking

0 sisei @i o J 2 | ® evencs [B5r8] @ proving oResource

[Events 2 “ 0 mstatex ¥ #30° 0 sty 2

Event [propert. = B
Checks » Ty b+ Tov Gov v Name Vale W
Evem Parameterts) m s o " sots
1 Adding_Rover R2 mr e Adding_Rover... {R1,R2}
I Start_to_Move R o ®N INITIALISATION {R1,R2}
©Move_to_Move " 2 (uninitialised... {R1,R2}
OBrake_to_Remove s o
©Stop_to_Remove_by_Controller ¥ Formulas.
‘©Moves.to_Stop.by.Controller
° > invariants b
> variants
¥ guards.
> Adding_Rover -
Y Sstart to Move T
R x R1
Y xeir T
x R1
- ir ®1
L Event-B Explor RodinProblem = B ¥ Move.to,Move 4
R TR em i
>R 2 b L
> {2 ARPIRT > rake_to_Remove N
¥ 2 ARPN_2 » Stop_to_Remove_by_C. n
» [ARPN_6 »Moves_to_Stop_by._Co. 1
v & ARPN_7_Modified »Moves_to_Brake L
r9co > Confiict_to_Stop. i
rec > Conflict_to_Brake L
r@c2 »Stop_To_Move_by_Con. L
»Qc3 »Brake_To_Move 1
roc encomemtic
s 9o imariantsok noeventermorsdetected
»r@c7

AIT-AMEUR, N. SINGH (IRIT,

INPT-ENSEEIHT { Formal development of complex systems

Animation of Event-B models. Model checking with ProB.
Deadlocks Freeness

@ Deadlock Freedom
Checks > Model Checking

Settings
Breadth First Search Symmetry Reduction
v | Find Deadlocks * No Symmetry Reduction
v Find Invariant Violations Nauty
Find Theorem Violations Permutation Flooding
Recheck Existing States Symmetry Marker (Hash)

Stop when all Events are Covered

Start Model Checking

iyl

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 140 / 147

Animation of Event-B models. Model checking with ProB.
LTL in ProB

Checks > LTL Model Checking

‘ Formula:
|

i v Open...

‘ Starting Point:

<>

1 Start in the (possible several) initialisation states of the model

‘ Symmetry Reduction:

} No Symmetry Reduction <

Start LTL Checking Cancel

@

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 141 /147

Animation of Event-B models. Model checking with ProB.
LTL in ProB

The following formula can be verified.
G{cr = o}

[State] LTL Counter-Example 52
Gler=0)) &
Ger =}

T T T T T T T T '—{

Adding_Rover — Adding_Rover — Start_to_Move — Start_to_Move —
Move_to_Stop_by_ Controller — Stop_to_Remove_by_ Controller —
Move_to_Stop_by_ Controller — Random_ Conflict

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 142 /147

Animation of Event-B models. Model checking with ProB.
LTL in ProB

The following formulas can be verified.

G{ Temperature >= 7& Temperature <= 35} No Counterexample
G{ Temperature < 35} Counterexample

G {Temperature > 7 } Counterexample
X {Temperature < 7 } Counterexample

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 143 /147

The RODIN paltform

o It is an IDE (Integrated Development Environment) for the development of
Event-B models

@ Developed on top of Eclipse
@ Many associated tools

v

Model editors, refinement

Proofs, model animation

Validation of models using model checking (ProB)

Code generation

Many Pluglns (UML, BPEL2B, THEORY, Prouveurs, etc.)

@ Available on http://wuw.event-b.org
Used for TP at ENSEEIHT

vVvyVvVvyy

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 144 /147

http://www.event-b.org

Plan

iyl

P

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {

rmal development of complex

Conclusion

@ Event-B is a system modelling method which uses refinement and proof
@ Incremental development approach

@ Many developments in areas like
> transport,

> electronic cards,

> cyber-physical systems,

» embedded systems, pacemaker, insulin pump,

» information systems, web services composition, voting machines,
» mathematical engineering, proof and demonstration of theorems,
> etc.

@ System modelling and high abstract level reasoning
@ Simple mathematical foundations

@ Availability of a tool with many plug-ins

I \Ec o

=

. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems. 2020 146 / 147

FIN

yamine@enseeiht.fr

nsingh@enseeiht.fr

iyl

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT { Formal development of complex systems.

	Introduction
	Propositional logic
	Predicate logic
	Set theory
	Modelling of Systems
	The Event-B method
	Refinement of Event-B machines

	Proof with Event-B
	Proof activity
	Proofs with Event-B and the Rodin platform

	The Rodin Platform
	Animation of Event-B models
	Conclusion

