
Formal development of complex systems

Yamine AIT-AMEUR, Neeraj Kumar SINGH

IRIT/INPT-ENSEEIHT
{yamine, nsingh}@enseeiht.fr}

2020

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 1 / 147

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method
Refinement of Event-B machines

7 Proof with Event-B
Proof activity
Proofs with Event-B and the Rodin platform

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 2 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 3 / 147

Introduction

Many complex systems are present in engineering, finance, marketing, etc.

Complex systems with integration of
I software
I hardware
I plants
I communications
I humains

Need to handle the environment in which a system evolves
Input/output, close/open loop

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 4 / 147

Introduction

Some problems

Expression of needs, requirement analysis
I fonctionnal,
I non fonctionnal

Specification of systems
Design of systems : composition, decomposition
System Validation / Verification, in particular for critical systems
SystemCertification according to certification authorities or standard
requirements

Which techniques ? Which methods ?

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 5 / 147

Introduction

The development of complex systems requires the definition of modelling
languages offering means for

expressing and defining abstractions of these systems in order to
I design and build these systems,
I reason on these systems to check their properties,
I predict their behaviour, if possible in any situation/context

These languages shall
I be rigorously/formally defined

F non ambiguous
F expressive

I support the capability to express different system facets, views, etc.
F functional
F safety and reliability
F real time
F architecture
F simulation
F · · ·

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 6 / 147

Introduction

Science of language (Jean-Piaget encyclopaedia "Logique et Connaissance
Scientifique" or "Scientific logics and knowledge")

If we refer to whom is talking, or more generally
to users of the language, this investigation relates to the
pragmatics.

If we make abstraction of language users and
analyse only language expressions and their meanings,
then, we are dealing with semantics.

Finally, si if we make abstraction of the meanings
to analyse only the relations between expressions, then,
we are dealing with syntax.

These three elements are constituents of science
of language or semiotics.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 7 / 147

Introduction
Model, associated to semantics

Interpretation of the understanding of a situation,
Description of entities and their relations
Definition borrowed from M. Minsky "Société de l’esprit"

For an observer A, M is a model of object
O, if M helps A to answer the questions he/she
has on O

The definition of system models at different abstraction levels allows
designers to reason on the system to design

Models shall
be rigorously defined
offer reasoning mechanisms

I interpreters,
I proof systems,
I simulators,
I analysers,
I type checkers,
I etc.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 8 / 147

Introduction

Objectives of the lecture
Present a formal system development method based on

I first order logic,
I set theory,
I state-transitions systems
I refinement/composition/decomposition

Plusieurs liens avec les cours déjà effectués
Modélisation
GLS
VAS
Spécification formelle
. . .

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 9 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 10 / 147

Objectifs

Recalls of basic logics concepts

Handling proofs and proof system

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 11 / 147

Propositional logics

Propositional logics operators.

⊥ Constant False
⊤ Constant True
¬A Negation
A ∧ B Conjunction
A ∨ B Disjunction
A⇒ B Implication
A⇐⇒ B Equivalence

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 12 / 147

Propositional logics

A→ B = ¬A ∨ B
A↔ B = (A→ B) ∧ (B → A)

Idempotent A ∧ A = A
A ∨ A = A
A ∧ ¬A = ⊥
A ∨ ¬A = ⊤
A ∧ ⊥ = ⊥
A ∧ ⊤ = A
A ∨ ⊥ = A
A ∨ ⊤ = ⊤
¬¬A = A

Commutativity A ∧ B = B ∧ A
A ∨ B = B ∨ A

Associativity (A ∧ B) ∧ C = A ∧ (B ∧ C)
(A ∨ B) ∨ C = A ∨ (B ∨ C)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 13 / 147

Propositional logics

Distributivity A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)
A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

De Morgan

¬(A ∧ B) = ¬A ∨ ¬B
¬(A ∨ B) = ¬A ∧ ¬B
A ∨ (¬A ∧ B) = A ∨ B
A ∧ (¬A ∨ B) = A ∧ B
A ∨ (A ∧ B) = A
A ∧ (A ∨ B) = A

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 14 / 147

Proofs and proof system
Sequent and inference rule

Sequent

list_of _hypotheses ⊢ conclusion

The list_of _hypotheses may be empty (e.g. case of a theorem)

Inference rule. Generic form A
C r or A1, . . . An

C r

I A is a set of sequents (may be empty) called Antecedent
I C is a Consequent sequent

Inference rule

list_of _sequents
sequent

The list_of _sequents may be empty (e.g. case of an axiom)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 15 / 147

Proofs and proof system

Definition of axioms.
Useful for definitions.

A ⊢ A (Axiom for hypothesis)

Γ; A ⊢ A (Axiom for extended hypothesis)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 16 / 147

Proofs and proof system

Definition of inference rules.
Useful for inferring (deduction) of new sequents

Implication Elimination (E) and Introduction (I)

Γ ⊢ A Γ ⊢ A → B
Γ ⊢ B (E→)

Γ; A ⊢ B
Γ ⊢ A → B (I→)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 17 / 147

Proofs and proof system

And Elimination (E) and Introduction (I)

Γ ⊢ A ∧ B
Γ ⊢ A (E1

∧)

Γ ⊢ A ∧ B
Γ ⊢ B (E2

∧)

Γ ⊢ A Γ ⊢ B
Γ ⊢ A ∧ B (I∧)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 18 / 147

Proofs and proof system

Or Elimination (E) and Introduction (I)

Γ ⊢ B
Γ ⊢ A ∨ B (I2∨)

Γ ⊢ A
Γ ⊢ A ∨ B (I1∨)

Γ ⊢ A ∨ B Γ; A ⊢ C Γ; B ⊢ C
Γ ⊢ C (E∨)

Elimination is useful for case base reasoning

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 19 / 147

Proofs and proof system

Handling negation

Γ ⊢ ⊥
Γ ⊢ A (E⊥)

Γ ⊢ A ∨ ¬A (Tiers Exclu)

Γ; (A→ ⊥) ⊢ ⊥
Γ ⊢ A (Pierce)

Be careful, non constructive features.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 20 / 147

Proofs and proof system. Tactics

Tactics
Tactics are compositions of inference rules
Useful to handle big proof steps
"Proof programming"

I unfolding/folding
I choice
I iteration

Proof systems implement
inference rules and
tactics

definitions

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 21 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 22 / 147

Predicate logic, first order logic (FOL)

∃x .P Existential Quantification

∀x .P Universal Quantification

Introduction of predicates, with variables, relations and functions.
P(x1, . . . xn)
P(f (x1), . . . , g(xn−2, xn−1), xn)

where
P is a predicate symbol
f and g are function symbols

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 23 / 147

Sequents in predicate logic

Γ ⊢ ∀x .A
Γ ⊢ [t | x]A (E∀ form 1)

Γ ⊢ ∀x .A
Γ ⊢ A (E∀ form 2)

Γ ⊢ A
Γ ⊢ ∀x .A (I∀) (for x /∈ FV (Γ))

The [t/x]Ψ notation represents the substitution, in Ψ, of the occurrences of x by t

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 24 / 147

Sequents in predicate logic

Γ ⊢ ∃x .A
Γ ⊢ [t | x]A (E∃ form 1) (for t = f (FV (Γ) ∪ FV (A)))

Γ ⊢ [t | x]A
Γ ⊢ ∃x .A (I∃)

Γ ⊢ ∃x .A Γ; A ⊢ B
Γ ⊢ B (E∃ form 2) (for x /∈ FV (Γ) ∪ FV (B))

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 25 / 147

Sequents in predicate logic
Refinement of the language. Introduction of Equality

Extension of the definitions of predicates avec by the introduction of the
Equality predicate

Predicate ::= Expression = Expression
Expression ::= . . .
Variable ::= . . .

Introduction of terms with
variables x , y , z · · ·
constants a, b, , c, · · ·
functions f , g , , l · · ·

Examples
Terms a, x, a+b, f(x,y,a), h(g(x),a),y)

Predicates P(x), x=a P(f(x,y,a),z), l(x)=a

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 26 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 27 / 147

Objectives

Recall of basic notions in

Set theory

Relations

Functions

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 28 / 147

Sets

Introduction of the Belongs To predicate E ∈ S where
I E is an expression

I S is a set

Introduction of set constructors.

Axiomatisation based definitions ,

Remark.
This lecture does not represent the whole axioms (definitions)
Part of these axioms are given.
They are relevant for the understanding of next steps.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 29 / 147

Sets

Three basic constructors are considered
Let S and T be two sets, x a variable and P a predicate. The follwoing set
constructions are defined.

Cartesian Product S × T

The set of Subsets or powerset P(S)

Definition of sets by comprehension {x | x ∈ S ∧ P}

These constructs are used to define other set operators.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 30 / 147

Sets. Basic operators

Inclusion S ⊆ T
Associated axioms

S ⊆ T , S ∈ P(T)
S = T , S ⊆ T ∧ T ⊆ S

Define an order relation on sets.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 31 / 147

Sets. Basic operators

Union ∪
Intersection ∩
Difference (Subtraction) −
Extension {.}
Empty Set ∅

A set of axioms is associated to each of these operators.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 32 / 147

Sets. Generalised operators

Generalised Union union(S)
Quantified Union ∪x .(x ∈ S ∧ P)
Generalised Intersection inter(S)
Quantified Intersection ∩x .(x ∈ S ∧ P)

A set of axioms is associated to each of these operators.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 33 / 147

Binary Relations

Binary Relation S ↔ T
Domain dom(r)
Co-domain (Range) ran(r)
Inverse r−1

Axiomatisation. A set of axioms is associated to binary relations.

r ∈ S ↔ T , r ⊆ S × T
E ∈ dom(r) , ∃y .(E ↦→ y ∈ r)
F ∈ ran(r) , ∃x .(x ↦→ F ∈ r)
E ↦→ F ∈ r−1 , F ↦→ E ∈ r

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 34 / 147

Binary Relations
Recall of basic notions
.

Partial / Total
Surjective / Injective / Bijective

Specific definitions of binary relations
Partial Surjective binary relation S ↔→ T
Total binary relation S ←↔ T
Total Surjective binary relation S ↔↔ T

Axiomatisation
S ↔→ T If r ∈ S ↔→ T then ran(r) = T
S ←↔ T If r ∈ S ←↔ T then dom(r) = S
S ↔↔ T If r ∈ S ↔→ T then dom(r) = S ∧ ran(r) = T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 35 / 147

Binary Relations

Manipulation of binary relations
Restriction and Subtraction

Domain Restriction S C r
Range Restriction r B T
Domain Subtraction S C− r
Range Subtraction r B− T

Axiomatisation
S C r S C r = {x ↦→ y | x ↦→ y ∈ r ∧ x ∈ S}
r B T r B T = {x ↦→ y | x ↦→ y ∈ r ∧ y ∈ T}
S C− r S C− r = {x ↦→ y | x ↦→ y ∈ r ∧ x /∈ S}
r B− T r B− T = {x ↦→ y | x ↦→ y ∈ r ∧ x /∈ T}

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 36 / 147

Binary Relations
Manipulation of binary relations

Image, composition, overriding and identity

Image r [S]
Composition p; q
Overriding p C− q
Identity id(S)

Manipulation of binary relations
Image, composition, overriding and identity

r [S] r [S] = {y |∃.x ∈ S ∧ x ↦→ y ∈ r}
p; q ∀p, q.p ∈ S ↔ T ∧ q ∈ T ↔ U ⇒

p; q = {x ↦→ y |(∃z . x ↦→ z ∈ p ∧ z ↦→ y ∈ q)}
p C− q p C− q = q ∪ (dom(q)C− r)
id(S) id(S) = {x ↦→ x |x ∈ S}
S C id id(S) = {x ↦→ x |x ∈ S}

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 37 / 147

Binary Relations

Manipulation of binary relations
Products and projection

Direct Product p
⨂︀

q
First (Left) projection prj1
Second (Right) projection prj2
Parallel Product p || q

Axiomatisation
p

⨂︀
q p

⨂︀
q = {x ↦→ (y ↦→ z) | x ↦→ y ∈ p ∧ x ↦→ z ∈ p}

prj1 prj1(r) = {x | x ↦→ y ∈ r}
prj2 prj2(r) = {y | x ↦→ y ∈ r}
p || q p || q = {(x ↦→ y) ↦→ (m ↦→ n) |x , y , m, n. x ↦→ m ∈ p ∧ y ↦→ n ∈ q}

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 38 / 147

Binary Relations

Manipulation of binary relations
All these operators are associated to

axiomatic definitions (axioms)
properties
definitions in predicate logic

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 39 / 147

Functions and Functions Operators

Functions
Partial Function S ↦→ T
Total Function S → T

Axiomatisation. A Function is a Relation
f ∈ S ↦→ T , f ∈ S ↔ T ∧ f −1; f = id(ran(f))

f ∈ S ↔ T ∧ f −1; f ⊆ T C id
f ∈ S → T , f ∈ S ↦→ T ∧ S = dom(f)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 40 / 147

Functions and Functions Operators

Other Function definitions
Partial Injection S ↦� T
Total Injection S� T
Partial Surjection S ↦� T
Total Surjection S � T
Bijection S�� T

Axiomatisation
S ↦� T S ↦� T = {f · f ∈ S ↦→ T ∧ f −1 ∈ T ↦→ S}
S� T S� T = S ↦� T ∩ S → T
S ↦� T S ↦� T = {f · f ∈ S ↦→ T ∧ ran(f) = T}
S � T S � T = S ↦� T ∩ S → T
S�� T S�� T = S� T ∩ S � T

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 41 / 147

Definition and Function Application

Lambda expression
Definition of a Function

𝜆x .(S | E) or 𝜆x .(x ∈ S | E (x))
Application of a Function

a ↦→ b ∈ 𝜆x .(x ∈ S | E (x)) , E (a) = b
with a ∈ S

Well definedness
Let f be a Partial Function, then

b = f (a) , a ↦→ b ∈ f
This property defines a Well- Definedness condition for a Function Definition

a ∈ dom(f)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 42 / 147

Logic notations
Rewriting logic expressions

Let us consider the predicate

f −1; f ⊆ id

It can be successfully translated to

∀x , y , z · x ↦→ y ∈ f ∧ x ↦→ z ∈ f =⇒ y = z

Applying rewriting
f −1; f ⊆ id
∀y , z · y ↦→ z ∈ (f −1; f) =⇒ y ↦→ z ∈ id
∀y , z · y ↦→ z ∈ (f −1; f) =⇒ y = z
∀y , z · (∃x · y ↦→ x ∈ f −1 ∧ x ↦→ z ∈ f) =⇒ y = z
∀y , z · (∃x · x ↦→ y ∈ f ∧ x ↦→ z ∈ f) =⇒ y = z
∀x , y , z · x ↦→ y ∈ f ∧ x ↦→ z ∈ f =⇒ y = z

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 43 / 147

Recap of the whole introduced notions.

Recap document from Ken. Robinson (Uni. South Wales - Sydney -
Australia

See the document providing a recap of the set of constructions introduced
previously.

The correspondences between mathematical notations and ASCII code
available in this document are useful for the users of the Rodin Platform.

This document is ditributed to Students

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 44 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 45 / 147

General notions on Systems
A system is observed through its evolution during life time
Observation of the system elements/components changing over time
A system is characterised by state
A state is made of

I /contextual / fixed / non-modifiable information defined is a dans la theory
containing all the required definitions and resources allowing a system designer
to describe a state

I modifiable / flexible information that record the changes of the system state
during time

associated to the system to design, to analyse, to simulate, etc.

System Constants and variables
Constants define contextual / fixed / non-modifiable information
Variables define modifiable/ flexible information

When the systems are described, using the mathematical constructs presented in
previous chapters Constants and Variables are defined

Remark. Note that other system modelling languages are available : type based,
synchronous/asynchronous, simulation, semi-formal modelling languages,
programming languages, etc.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 46 / 147

General notions on Systems

States as a set of variables
A state S is defined as a set of state variables {x , · · · }
State variables are valued. They are associated to variable values.

States evolution
A state S may evolve after the occurrence of an event
Notation x ev−→ x′ where

I ev is an event
I x et x ′ represent respectively a state variable x before and after the

occurrence of event ev .

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 47 / 147

General notions on Systems

Before-After predicates as a relation on states
Event ev defines a relation on states.

I BAA(x, x′) is a Before-After Predicate characterising the event ev .
Example.

If ev is x := x + 1 then BAA(x, x′) is x′ = x + 1 or

BAA(x , x ′) ≡ x ′ = x + 1

This definition is the assignment definition of Hoare Logic
{[x/E]Ψ}x := E{Ψ}

First order logic for BAA
Again, in the course, we rely on first order logics to describre Before-After
Predicates
The logic notions presented in the previous chapters will be used.

Remark. Note that other logics could have been used to describe such a
relation : temporal logics, dynamic logics or type systems

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 48 / 147

General notions on Systems

BAA describes a single state variable change only.
We need to describe evolution of states along time

Traces as sequences of state evolutions
A trace is a sequence of events occurrences

x0
e1−→ x1

e2−→ x2
e3−→ x3

e3−→ x4
e4−→ x5

e5−→ x6
e6−→ x7 . . . xn

en−→ xn+1 . . .

A trace with events which do not modify state variables can be described as
well (presence of 𝜏 - transitions)

x0
e1−→ x1

e2−→ x2
𝜏−→ x3

e3−→ x4
e4−→ x5

𝜏−→ x6
e6−→ x7 . . . xn

en−→ xn+1 . . .

The 𝜏 events describe stuttering steps.
The set of all traces allows a designer to observe the behaviour of a system

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 49 / 147

General notions on Systems

A safety property S on a state x asserts that nothing bad happens in state x
Notation S(x)

An invariant is a safety property in all the states of all the observed traces
The property S shall be observable in all the states of the system

S(x0) e1−→ S(x1) e2−→ S(x2) 𝜏−→ S(x3) e3−→ S(x4) e4−→ S(x5) 𝜏−→ S(x6)

e6−→ S(x7) . . . S(xn) en−→ S(xn+1) . . .

We write
∀i ∈ N. S(xi)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 50 / 147

General notions on Systems

∀i ∈ N. S(xi)

To prove this kind of properties we rely on induction on the length of the
traces

I The safety property holds at initial state, at initialisation
I If this property holds in any state xi (recurrence hypothesis) and it still holds

after the occurrence of any triggered event, then this property holds for all
states of traces of the system

The proof of this property may be complex when it is realised on the whole
set of events of a system

I Use refinement/abstraction to reason on "less complex" or on abstract
traces which hide some events (using 𝜏 events) of the concrete trace

I Refinement/abstraction shall preserve the link between abstract and concrete
traces
Need to define a refinement/simulation relationship

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 51 / 147

General notions on Systems
A liveness property P leads_to Q for a state x asserts that there exist a
path in the traces that lead from a state x where P holds leading to a state
x ′ where Q holds

Notation P Q

A liveness property P Q asserts that a state x ′ where Q(x ′) holds is
reachable from a state x where P(x) holds

The property P Q is defined on a trace such that when P(xi) holds, there
exists a future state xj , j > i where Q(xj) holds.

xi
e1−→ xi+1

e2−→ xi+2
𝜏−→ xi+3

e3−→ xi+4
e4−→ xi+5

𝜏−→ xi+6

e6−→ xi+7 . . . xj
ej−→ xj+1 . . .

We write
For a state xi, i ∈ N. ∃j ∈ N. j > i. P(xi) =⇒ Q(xj)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 52 / 147

General notions on Systems

For a state xi, i ∈ N. ∃j ∈ N. j > i. P(xi) =⇒ Q(xj)

To prove this kind of properties we rely on the definition of a variant i.e. a
sequence of decreasing natural numbers

I We know that each sequence of decreasing natural numbers is finite and
converges to 0

I Let xk be a state in the trace. Initially xk = xi (i.e. k = i.
I Then, k increases to reach the suited state
I When state xj is reached, then xk = xj
I Here, the sequence j − k is a decreasing sequence

This reasoning holds for any liveness property
Again this proof is an induction. We shall show that

I j − k is a natural number
I j − k is a decreasing sequence

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 53 / 147

Requirements for a system modelling language

1 The values of state variables x belong to a set of licit VALUES
=⇒ Require to define this of these sets

2 The events are relations on the set of states {ev1, . . . evn}
=⇒ Require to define events as transitions from a state to another one

3 Invariants express, on traces, properties of the system
=⇒ Require of a language to define such properties

4 Invariants are proven on traces
=⇒ Require a proof system (in particular induction)

5 The definition of less abstract traces allows to express properties "simpler" to
prove
=⇒ Require a refinement/abstraction operation which links abstract
traces to concrete traces of two systems ie.e simulation relationship

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 54 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method
Refinement of Event-B machines

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 55 / 147

The Event-B method (J.R. Abrial). Overview

Event-B is a formal method for system development

It is based on
I Set theory and First order Logic

An Event-B model defines
I a state of the system to model
I an initialisation event and a set of events characterising state evolutions and

changes
I an invariant formalising the safety properties of a the system
I Other properties of the system e.g. liveness, deadlock freeness, determinism,

etc.
I A refinement operation allowing to describe a concrete system which refines

an abstract one.
F It allows adding design decision and precise information on the behaviour of the

system to design.
F It preserves the properties of the abstract system in the concrete system thanks

to a gluing invariant.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 56 / 147

Event based system modelling with Event-B : Modelling
Principles —– Event-B

Event based systems modelling
Concurrents systems
Software, hardware (or both) systems
Refinement and proof
A system is seen as a state-transitions system
Refinement offers a decomposition mechanism of state-transitions systems
A simulation relationship links an abstract model and its refinement
Simulation is a requirement for refinement correctness
"Correct by construction" approach i.e. the system is explicitly correctly
built

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 57 / 147

Model definition with Event-B

Models are defined incrementally
I A first/initial abstract machine is designed
I A sequence of refinement of an existing machine is designed incrementally

moving from an abstract level to a concrete level
Models rely on sets and constants defined in a context Event-B component.
The definitions are given by axioms and theorems may be introduced.
Three relations define links between Event-B components

I The sees relation expresses the use, by a machine, of constants and sets
defined through axioms and fulfilling theorems of a context

I The extends relation expresses the extension (enrichment of a context) by
adding new sets, constants, axioms and theorems

I The refines relation states that an Event-B model (machine) resp. event is
refined by another Event-B model or event reps.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 58 / 147

Machines and contexts

Machine Defines the system mo-
del as a state-transitions (state
variables and events)

REFINES an other machine
SEES a context
VARIABLES of the model
INVARIANTS satisfied by
the variables (state)
THEOREMS satisfied by the
variables (state) and
deduced from invariants
and seen contexts
VARIANT decreasing
EVENTS modifying state
variables

Context It contains the defini-
tions of the domain concepts nee-
ded to model the system. It also
defines the proof context.

EXTENDS an other context
SETS declares news sets
CONSTANTS défines a list of
constants
AXIOMS defining properties
of sets and constants
THEOREMS a list of theorems
deduced from axioms

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 59 / 147

Event B contexts

CONTEXT
ctx

EXTENDS
actx

SETS
s

CONSTANTS
c

AXIOMS
axi :

THEOREMS
Tci :

END

Context
ac extends the context c and adds
new concepts
s sets defined by comprehension or
intention
k definition of constants
ax1 axioms defining sets and
constants
T(x) set of theorems deduced from
axioms and theorems.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 60 / 147

Event B Machines
MACHINE

m
REFINES

am
SEES

ctx
VARIABLES

x
INVARIANTS

I(x)
THEOREMS

T(x)
VARIANT

v
EVENTS

ev1 = ...
ev2 = ...
...

END

Machine
m abstract machine corresponding
to the system model
am machine refined by m

c visible contexts of machine m.
They define the context Γ(m)
x variables defining machine
machine m state
I(x) Invariants de la machine m

T(x) Theorems deduced from the
context and invariant
v expression defining a decreasing
variant (either a natural number or
a set)
ev1, ... list of machine events
describing state changes with at
least an INITIALISATION event

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 61 / 147

Modification of state variables
State variables modified by actions or substitutions in events
Different types of substitutions (variables modifications) are available
Substitutions are characterised by Before-After Predicates BAA

Skip Null/Empty Action

x := E Becomes expression E (Simple Assignement)

x :∈ S Becomes element of S (Arbitrary choice in a set S)

x :| P Becomes such that P (Arbitrary choice such that P

f (x) := E Equivalent to f := f C− {x ↦→ E}

Substitution x :| P encodes all the other substitutions. Its BAA is P(x , x ′)
The previous substitutions can be extend to multiple variables modifications

x1, . . . xn :| P

x :| P and x :∈ S are non-deterministic actions
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 62 / 147

Event-B : Events
Initialisation

I Definition initial values of state variables. x : |P
Modification of state variables with Before-After Predicates BAA

I BAA(x, x′). Example x′ = x + 1 pour x := x + 1 or for x :| (x′ = x + 1)
Three types of events

event_1 =
begin

x : |BAA(x , x ′)
end

Non guarded event

event_2 =
when

G(x)
then

x : |BAA(x , x ′)
end

Guarded Event

event_3 =
any l
where G

G(l, x)
then

x : |BAA(x , x ′, l)
end

Parameterised Event

where
x is a (set of) variables
l is a list of parameters
G(x) is a boolean expression on state variables expressing a guard
BAA(x , x ′) and BAA(x , x ′, l) are before-after predicate recording
a state change

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 63 / 147

Events. Definition of associated BAA

Event : E Before-After Predicate (BAA)

begin x : |P(x , x ′) end P(x , x ′)

when G(x) then x : |P(x , x ′) end G(x) ∧ P(x , x ′)

any t
where G(t, x)
then x : |P(x , x ′, t) end

∃ t. (G(t, x) ∧ P(x , x ′, t))

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 64 / 147

Events. Definition of associated guards

Event : E Guard : grd(E)

begin S end TRUE

when G(x) then T end G(x)

any t where G(t, x) then T end ∃ t. G(t, x)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 65 / 147

Machine Proof Obligations

Proof obligation
(INV1) Invariant preservation at initialisation

(INV2) Invariant preservation by each event

(DEAD) Deadlock freeness

(SAFE) Theorems shall be prove,

(FIS) Events shall be feasible

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 66 / 147

Machine Proof Obligations

Proof obligation

(INV1) Γ(s, c) ⊢ Init(x) ⇒ I(x)

(INV2) Γ(s, c) ⊢ I(x) ∧ BAA(e)(x , x ′) ⇒ I(x ′)

(DEAD) Γ(s, c) ⊢ I(x) ⇒ (grd(e1) ∨ . . . grd(en))

(SAFE) Γ(s, c) ⊢ I(x) ⇒ T (x)

(FIS) Γ(s, c) ⊢ I(x) ∧ grd (E) ⇒ ∃x ′ . P(x , x ′)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 67 / 147

Event based system modelling with Event-B : Modelling
Principles —– Event-B

Components of an Event-B model
Contexts

Machines

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 68 / 147

Event-B models. Handling contexts

Contexts define theories associated to models.
Definition Of the theories required by system models
Contexts are imported by machines using the Sees Clause

Context C0
Sets s
Constants c
Axioms Ax(s, c)
Theorems Tc(s, c)
End

Contexts

constants (c)
sets (s)
Axioms Ax(s,c)
Theorems Tc(s,c)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 69 / 147

Event-B models. Machine definition

Machines define a state-transitions system.
Machines. Initial state + events (transitions between states).

Machines : Variables (état),
Events (transitions),
Invariants I(s, c, xA), Theorems
T (s, c, xA)
Proof Obligations
Non determinism
Interleaving semantics with
stuttering
Traces correspnd to sequences of
event triggerings

Machine Spec
Sees C0
Variables xA
Invariants Inv(s, c, xA)
Theorems T (s, c, xA)
Events

Event Initialisation =
begin

xA :| Init(s, c, x′
A)

end ;
Event An_event = Any l

Where
GA(l ,s,c,xA)

Then
xA :| AC1(l ,s,c,xA ,x′

A)
End

Event Another_event =
When

GGA(s,c,xA)
Then

xA :| AC2(s,c,xA ,x′
A)

End
...

End

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 70 / 147

Event-B models. Machine definition
We recall the three types of Events

événement_1 =
begin

x : |BAA(x , x ′)
end

Non guarded event

événement_2 =
when

G(x)
then

x : |BAA(x , x ′)
end

Guarded event

Evenement_3 =
any l
where G

G(l, x)
then

x : |BAA(x , x ′, l)
end

Parameterised event

where
I x is a (set of) variables
I l is a list of parameters
I G(x) is a boolean expression on state variables expressing a guard
I BAA(x , x ′) and BAA(x , x ′, l) are before-after predicate recording

a state change

Correspondence between an Event-B event and a TLA action (TLA-L.
Lamport)
Events describe a state-transitions system with interleaving
semantics for events

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 71 / 147

Event-B proof obligations - Core POs (recall)

POs for theorems
A(s, c)⇒ Tc(s, c)
A(s, c) ∧ I(s, c, x)⇒ T (s, c, x)

Invariant preservation PO
A(s, c) ∧ I(s, c, x) ∧ G(s, c, l , x) ∧ BAA(s, c, l , x , x ′)

⇒I(s, c, x ′)
Event feasibility PO

A(s, c) ∧ I(s, c, x) ∧ G(s, c, l , x)
⇒∃x ′.BAA(s, c, l , x , x ′)

Variant PO
A(s, c) ∧ I(s, c, x) ∧ G(s, c, l , x)⇒ V (s, c, x) ∈ N

Variant PO
A(s, c) ∧ I(s, c, x) ∧ G(s, c, l , x) ∧ BAA(s, c, l , x , x ′)

⇒V (s, c, x ′) < V (s, c, x)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 72 / 147

Event-B proof obligations - Other POs
Other PO are added to the previous ones

Deadlock freeness (DEAD) : disjunction of guards
I A single guard is true at each event triggering (Deterministic system)
I At least one guard is true at each event triggering (Non determinism)
I No gaurd may be true at event triggering (The developed system may

deadlock)
Liveness and reachability (LIV) Leads_to or P Q or

when
P

then
Q

Similar to Liveness in temporal logic. For example, in LTL with leads_to
noted operator or ◇
Refinement

I Preservation of the invariant thanks to the introduction of a gluing invariant
I Do not allow an event of refined machine to be triggered infinitely many times

(use of a variant). This a livelock
I The refined system does not deadlock more than the abstract one

...
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 73 / 147

An example

contexts
data

sets
MESSAGES
AGENTS
DATA

constants
n
infile

axioms
axm1 : n ∈ N
axm2 : n ̸= 0
axm3 : infile ∈ 1 .. n → DATA

end

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 74 / 147

An example (cont.)

MACHINE agents
SEES data
VARIABLES

sent
got
lost

INVARIANTS
inv1 : sent ⊆ AGENTS × AGENTS
inv2 : got ⊆ AGENTS × AGENTS
inv4 : (got ∪ lost) ⊆ sent
inv6 : lost ⊆ AGENTS × AGENTS
inv7 : got ∩ lost = ∅

INITIALISATION
BEGIN

act1 : sent := ∅
act2 : got := ∅
act4 : lost := ∅

END

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 75 / 147

An example (cont.)

sending a message
ANY

a
b

WHERE
grd11 : a ∈ AGENTS
grd12 : b ∈ AGENTS
grd1 : a ↦→ b /∈ sent

THEN
act11 : sent := sent ∪ {a ↦→ b}

END

getting a message
ANY

a
b

WHERE
grd11 : a ∈ AGENTS

grd12 : b ∈ AGENTS
grd13 : a ↦→ b ∈ sent ∖ (got ∪ lost)

THEN
act11 : got := got ∪ {a ↦→ b}

END

loosing a messge
ANY

a
b

WHERE grd1 : a ∈ AGENTS
grd2 : b ∈ AGENTS
grd3 : a ↦→ b ∈ sent ∖ (got ∪ lost)

THEN
act1 : lost := lost ∪ {a ↦→ b}

END

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 76 / 147

Another example

An example of
specification.
A single event selection

Context C0
Sets
PRODUCTS, SITES

. . .
End

Many refinements are
possible

Machine M1
Variables P, carts, selection_done
Invariants

P ⊆ PRODUCTS
carts ⊆ SITES × PRODUCTS
selection_done ∈ BOOL
selection_done ⇒ ran(carts) = P
∀p, p ∈ ran(carts) ⇒ card(carts−1 [{p}]) = 1

Events
Event initialisation =

P :∈ P(PRODUCTS)
carts := ∅
selection_done := FALSE

Event selection =
Any someCarts
Where

someCarts ⊆ SITES × PRODUCTS
ran(someCarts) = P
∀p, p ∈ ran(carts) ⇒ card(carts−1 [{p}]) = 1

Then
carts := someCarts
selection_done := TRUE

End
End

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 77 / 147

Refinement in Event-B

New events may appear.
I They refine the Skip event
I Definition of a simulation (weak) relation

The concrete events (refined events) shall not introduce more deadlock
than available in the abstraction
The set of new events may lead to liveness (due to stuttering)

I Need to use a decreasing variant to allow triggering of the abstract events
The abstract model use variables x while the concrete ones use variables y ,
then

I a gluing invariant J(x , y) shall link abstract and concrete variables x and y
Each abstract event is refined by a concrete event

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 78 / 147

Refinement in Event-B. Proof obligations

Guarded events
Let us consider an abstract event and the corresponding refining concrete event
such that

EVENT =
when

G(x)
then

x := E(x)
end

EVENT =
when

H(y)
then

y := F(y)
end

Invariant preservation proof obligation
Let I(x) and J(x , y) be the invariants , then we need to prove the refinement
invariant preservation as

I(x) ∧ J(x , y) ∧ H(y) =⇒ G(x) ∧ J(E (x), F (y))

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 79 / 147

Refinement in Event-B. Proof obligations

Parameterised events
Let us consider an abstract event and the corresponding refining concrete event
such that

EVENT =
any v where

G(x,v)
then

x := E(x,v)
end

EVENT =
any w where

H(y,w)
then

y := F(y,w)
end

Invariant preservation proof obligation
Let I(x) and J(x , y) be the invariants , then we need to prove the refinement
invariant preservation as

I(x) ∧ J(x , y) ∧ H(y , w) =⇒ ∃v . (G(x , v) ∧ J(E (x , v), F (y , w)))

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 80 / 147

Refinement in Event-B. Proof obligations
New events
Let us consider a new event refining the skip event as follows

EVENT =
SKIP
end

EVENT =
when

H(y)
then

y := F(y)
end

Invariant preservation proof obligation
Let I(x) and J(x , y) be the invariants , then we need to prove the refinement
invariant preservation as

I(x) ∧ J(x , y) ∧ H(y) =⇒ J(x , F (y))

Remark. In Rodin, no need to declare the event Skip of the abstraction.
By default, any new event refines the Skip event.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 81 / 147

Refinement in Event-B

Context C1
Extends C0
Sets sr
Constants cr
Axioms A(s, c, sr , cr)
Theorems Tc(s, c, sr , cr)
End

Extension of Contexts.
Machines are refined.
New variables.
New events.
Gluing Invariants.
Refinement Proof
Obligations.

Machine Spec_Ref
Refines Spec
Sees C1
Variables y
Invariants Invr (s, c, sr , cr , x, y)
Theorems Tr (s, c, sr , cr , x, y)
Events

Event Initialisation =
begin

y :| Init(s, c, y′)
End ;

Event An_event_ref
Refines An_event =

Any e
Where

G1r (e,s,c,sr ,cr , y)
Then

y :| AC1r (e,s,c,sr ,cr , y ,y′)
End

Event Another_event_ref
Refines Another_event =

When
G2r (s,c,sr ,cr , y)

Then
y :| AC2(s,c,sr ,cr , y ,y′)

End
Event New_event

When
G3r (s,c,sr ,cr , y)

Then
y :| AC3(s,c,sr ,cr , y ,y′)

End
...

End

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 82 / 147

Witnesses are helpful in refinement
Back to parameterised events
The refinement of the left event by the right one

EVENT =
any v where

G(x,v)
then

x := E(x,v)
end

EVENT =
any w where

H(y,w)
then

y := F(y,w)
end

produces existential proof obligations.

Example : Existential proof obligation for INV preservation
I(x) ∧ J(x , y) ∧ H(y , w) =⇒ ∃v . (G(x , v) ∧ J(E(x , v), F (y , w)))

Their proof, usually consists in producing witnesses W for the existentially
quantified parameter using the following proof rule.

Γ ⊢ ∃x .A
Γ ⊢ [t | x]A (E∃)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 83 / 147

Witnesses are helpful in refinement : Example

Explicit witnesses in a refinement
A refinement offers the capability to give a witness (WITH Clause) in order
to help the prover to discharge the proof obligation.

Example
EVENT =

any n where
n ∈ NAT

then
x := n

end

EVENT =
WITH

n : n = 4
then

x := 4
end

The witness helps to prove the existential proof obligation.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 84 / 147

Complete representation of Event-B components
Context Machine Refinement
CONTEXT Ctx MACHINE MA MACHINE MC

SETS s SEES Ctx REFINES MA

CONSTANTS c VARIABLES xA VARIABLES xC

AXIOMS A INVARIANTS IA(xA) INVARIANTS J(xA, xC)
THEOREMS Tctx THEOREMS Tmch(xA) ...
END VARIANT V (xA) EVENTS

EVENTS EVENT evtC

EVENT evtA REFINES evtA

ANY 𝛼A ANY 𝛼C

WHERE GA(xA, 𝛼A) WHERE GC (xC , 𝛼C)
THEN WITH
xA :| BAPA(𝛼A, xA, xA′

) xA′, 𝛼A: W (𝛼A, 𝛼C , xA, xA′, xC , xC′
)

END THEN
... xC :| BAPC (𝛼C , xC , xC′

)
END
...

(a) (b) (c)
Table – Event B : Context, Machine and Refinement components

Note the presence of the WITH clause introducing witnesses using a
before-after predicate for the variables and the parameters.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 85 / 147

Refinement Proof Obligations
(6) Initialisation A ∧ GC (𝛼C)

(INIT) ∧W (𝛼A, 𝛼C , xA′, xC ′)
∧BAPC (𝛼C , xC ′)⇒ J(xA′

, xC ′)
(7) Invariant A ∧ GC (xC , 𝛼C)

preservation ∧W (𝛼A, 𝛼C , xA, xA′, xC , xC ′)
(INV) ∧BAPC (xC , 𝛼C , xC ′)∧

IA(xA) ∧ J(xA, xC)⇒ J(xA′
, xC ′)

(8) Event A ∧ GC (xC , 𝛼C)
Simulation ∧IA(xA) ∧ J(xA, xC)

(SIM) ∧W (𝛼A, 𝛼C , xA, xA′, xC , xC ′)
∧BAPC (xC , 𝛼C , xC ′)
⇒ BAPA(xA, 𝛼A, xA′)

(9) Guard A ∧ IA(xA) ∧ J(xA, xC)
Strengthening ∧W (𝛼A, 𝛼C , xA, xA′, xC , xC ′)

(GS) ∧GC (xC , 𝛼C)⇒ GA(xA, 𝛼A)

Table – Refinement Proof obligations

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 86 / 147

Refinement in Event-B. An example

Introduction
1 The objective is to design an information system to manage orders and

invoices
2 To issue an invoice, the state of an order shall be changed (moving from

state "pending" to "invoiced").
3 On an order, only one reference to an ordered product is available together

with a quantity. Quantity may be different from an order to another.
4 A given product reference may appear on several orders.
5 The state of an order moves to "invoiced" if the ordered quantity is less or

equal to the quantity of available products in the stock.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 87 / 147

Refinement in Event-B. An example

The following cases shall be considered.
Case 1
All the order references are available in the stock. The stock and the orders may change
and evolve due to

arrival of new orders or cancellations of orders
the supplying of products with new quantities added to the stock

But, we do not have to take these entries into account. This means that you will not
receive two entry flows (orders, entries in stock). The stock and the set of orders are
always given to you in a up-to-date state
Case 2
We shall take into account

arrivals of new orders
cancellations of orders
arrivals of new quantities added to the stock

End of case study

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 88 / 147

Refinement in Event-B. An example

model
Case1

sets
ALL_ORDERS; PRODUCTS

properties
ALL_ORDERS ̸= ∅

variables
orders, stock, invoiced_orders, reference, quantity

invariant
orders ⊆ ALL_ORDERS ∧
stock ∈ PRODUCTS −→ N ∧
invoiced_orders ⊆ orders ∧
quantity ∈ orders −→ N* ∧
reference ∈ orders −→ PRODUCTS

initialisation
stock, invoiced_orders, orders, quantity , reference := PRODUCTS × {0},∅, ∅, ∅, ∅

events
. . .
END

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 89 / 147

Refinement in Event-B. An example

invoice_order =
ANY

o
WHERE

o ∈ orders − invoiced_orders ∧
quantity(o) ≤ stock(reference(o))

THEN
invoiced_orders := invoiced_orders ∪ {o}
stock(reference(o)) := stock(reference(o)) − quantity(o)

END ;

delivery_to_stock =
BEGIN

stock : | (stock′ ∈ PRODUCTS −→ N)
END

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 90 / 147

Refinement in Event-B. An example

cancel_orders =
BEGIN

orders, quantity , reference : | (orders′ ⊆ ALL_ORDERS ∧
invoiced_orders′ ⊆ orders′ ∧
quantity ′ ∈ orders′ −→ N* ∧
reference′ ∈ orders′ −→ PRODUCTS)

END ;

new_orders =
BEGIN

orders, quantity , reference : | (orders′ ⊆ ALL_ORDERS ∧
invoiced_orders′ ⊆ orders ∧
quantity ′ ∈ orders′ −→ N* ∧
reference′ ∈ orders′ −→ PRODUCTS)

END ;

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 91 / 147

Refinement in Event-B. An example

model
Case2

refines
Case1

variables
orders, stock, invoiced_orders, reference, quantity

initialisation
stock, invoiced_orders, orders, quantity , reference := PRODUCTS × {0},∅, ∅, ∅, ∅

events
. . .

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 92 / 147

Refinement in Event-B. An example
cancel_orders
Refines cancel_orders =
ANY

o
WHERE

o ∈ orders − invoiced_orders
THEN

orders := orders − {o}
quantity := {o} C− quantity
reference := {o} C− reference

END ;

delivery_to_stock
Refines delivery_to_stock =
ANY

p, n
WHERE

p ∈ PRODUCTS
n ∈ N

THEN
stock(p) := stock(p) + n

END
END

new_orders
Refines new_orders =
ANY

o, q, p
WHERE

o ∈ ALL_ORDERS − orders
q ∈ N*

p ∈ PRODUCTS
THEN

orders := orders ∪ {o}
quantity(o) := q
reference(o) := p

END ;

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 93 / 147

Refinement in Event-B. Methodology

Some methodological principles
Find the right abstraction at the right abstraction level
Define a refinement strategy

I What are the refinement steps for a development ?
Write the right invariants and this, the right properties

I Model animation can help to identify the invariant
Caution

Introduce properties at different refinement levels, when their expression
becomes possible
Take advantage from refinement in order to ease the proof process

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 94 / 147

Structure of an Event-B development

A machine models
I the static part of a system i.e. state with state variables
I the dynamic of a system i.e. set of events

The properties, formalising requirements, are described in the INVARIANT ,
THEOREM, VARIANT

I safety
I deadlock freeness
I function of the system
I reachability,
I etc.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 95 / 147

Structure of an Event-B development

A set of machines linked by a refinement relationship (simulation)
Expressed requirements are handled incrementally during the refinement
process
Contexts are extended each it is necessary to introduce new definitions and
axiomatisations of needed concepts
The SEES clause makes contexts in a machine
Development activities : modelling, refinement, proof, animation, exhaustive
verification, code generation, close loop modelling, etc.
Event-B method handles the development of complex systems

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 96 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B
Proof activity
Proofs with Event-B and the Rodin platform

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 97 / 147

Proof in logic

Proof strategy for a sequent S
Let

I A collection 𝜏 of inference rules of the form A
C r

I A sequent container K , containing S at initialisation

While K is not empty

∙ CHOOSE an inference rule A
C r in 𝜏 such that its conclusion

C is in K
∙ SUBSTITUTE C in K by the hypotheses A (if there are)

End

The proof succeeds when K becomes empty
The proof is said to be Goal Oriented

The result is a Proof Tree

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 98 / 147

The Proof Tree

Let us consider S2, S3, S4
S1

r3 inference rule

↓
S1
r3

↘ ↓ ↘
S2 S3 S4
? ? ?

Inference rule r3 is applied to the sequent S1
This rule produces the sequents S2, S3, and S4

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 99 / 147

The Proof Tree. An example

Let us consider the following inference rules

S2, S3, S4
S1

r1 S7
S4

r2 S2
r3

S5
r4 S5, S6

S3
r5 S6

r6

S7
r7

Our objective is to prove the sequent S1

↓
S1
r1

↘ ↓ ↘
S2 S3 S4
? ? ?

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 100 / 147

The Proof Tree. An example
Let us consider the following inference rules

S2, S3, S4
S1

r1 S7
S4

r2 S2
r3

S5
r4 S5, S6

S3
r5 S6

r6

S7
r7

Our objective is to prove the sequent S1

↓
S1
r1

↘ ↓ ↘
S2 S3 S4
r3 r5 r2

↘ ↓ ↓
S5 S6 S7
r4 r6 r7

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 101 / 147

Plan
1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B
Proof activity
Proofs with Event-B and the Rodin platform

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 102 / 147

Proof in logics
A proof in sequent calculus is a tree.

L’application of inference rules a proof tree.
Two types of reasoning

I Forward reasoning.

Top-Down Application of inference rules A
C ↓

I Backward reasoning.

Bottom-Up Application of inference rules A
C ↑

Building the proof tree represents the proof activity
I Automatic building the proof tree using automatic provers

F Examples : Predicate provers, reasoners, SAT or SMR Solvers, static analysis,
etc.

I Interactive application of inference rules or deduction rules available in proof
assistants

F Examples : CoQ, Atelier B, Rodin, Isabelle/HOL, etc.
I Mixed building of the proof tree combing both automatic and interactive

proofs
I F Use of proof tactics with CoQ, Atelier B, Rodin, Isabelle/HOL, TLAPS

etc.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 103 / 147

Prover Interface : A Tree and a Palette of buttons the
inference rules

r1 ↓
r2 S1
r3 ?
r4
pp
pr

Utilisation (Press)
r1

r8 ↓
r2 S1
r4 r1
r6 ↘ ↓ ↘
pp S2 S3 S4
pr ? ? ?

We may use
Inference Rules (ri)
Automatic provers like pr , pp or SMT, etc.

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 104 / 147

A Difficulty : Size of the window

r8 ↘ ↓ ↘
r2 S2 S3 S4
r4 ? ? ?
r6
pp
pr

pp
then
r6

r5 ↘ ↓ ↘
r4 S2 S3 S4
r6 pp r6 ?
r9 ↘ ↓
pp S5 S6
pr ? ?

The previous interface is not well adapted
Les Sequents are usually of big size (many hypotheses)
The Proof Tree may be very deep

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 105 / 147

Current form of a sequent

In general, sequents issued from Proof Obligations are of the following form

H ⊢ L =⇒ G

Conclusion is usually an implication
G is Goal is a predicate, usually a non-conjunctive
L is the set of so-called local hypotheses (may be an empty set)

General form of a sequent for the proof of invariant

H ⊢ I(x) ∧ G(x) ∧ P(x , x ′) =⇒ I(x ′)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 106 / 147

A possible solution : Use of two windows

- A Tree Window with simplified sequents (goals only)

- Sequent Window containing the complete sequent of interest

H2 ⊢ L2 =⇒ G2

r2 r4 r6 pp pr

G1
r1

↘ ↓ ↘
G2 G3 G4
? ? ?

Fenêtre Séquent Fenêtre Arbre

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 107 / 147

A proof step

H2 ⊢ L2 =⇒ G2

r2 r4 r6 pp pr

G1
r1

↘ ↓ ↘
G2 G3 G4
? ? ?

Use of (Press) pp

H3 ⊢ L3 =⇒ G3

r2 r5 r8 pp pr

G1
r1

↘ ↓ ↘
G2 G3 G4
pp ? ?

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 108 / 147

More realistic windows

H3

L3

G3

r2 r4 r6 pp pr

G1
r1

G2
pp

→ G3
?
G4
?

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 109 / 147

More elaborated sequents

hidden ; searched ; cached⏟ ⏞
list_of _hypotheses

⊢ local =⇒ goal⏟ ⏞
conclusion⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

hidden Non visible in the sequent window

searched Visible after search in hidden

cached Visible but is no more part of the conclusion

local Visible and part of the conclusion

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 110 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 111 / 147

The Rodin Platform
It is an application developed on Eclipse for the management and development of
system models supporting verification of system model correctness.
Download http://www.event-b.org

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 112 / 147

http://www.event-b.org

The Rodin Platform. Launching Rodin & definition of
Workspace

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 113 / 147

The Rodin Platform. The Rodin interface (GUI)
Toolbar

Symbol ViewRodin problmes View

Editor View

Event-B
Explorer

Outline View

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 114 / 147

The Rodin Platform. Creating a new Project)
File > New > Event-B Project

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 115 / 147

The Rodin Platform. Creating Event-B Components
File > New > Event-B Components

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 116 / 147

The Rodin Platform. Construction of contexts (Context
component)

Wizards

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 117 / 147

The Rodin Platform. Construction of contexts (Context
component) with Wizards

Figure – New sets (Enumerated Set) and new axioms (Axioms)

Figure – New sets (New Carrier Sets) and constants definitions (Constants)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 118 / 147

The Rodin Platform. Rodin Editor for contexts
components (Context)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 119 / 147

The Rodin Platform. Building Machines
Wizards

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 120 / 147

The Rodin Platform. Building Machines with Wizards

Figure – New Variables, Invariants and Variants

Figure – Adding Invariants

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 121 / 147

The Rodin Platform. New events (Events)

Figure – New Events)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 122 / 147

The Rodin Platform. Rodin Editor for the Machine
component

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 123 / 147

The Rodin Platform. Proof support

The RODIN Prover

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 124 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 125 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover
Interface (GUI) for an unsuccessful proof

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 126 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover
View of the Proof Control

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 127 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover.
Search of Hypotheses

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 128 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The information perspective on proofs

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 129 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The used Types perspective

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 130 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The used inference rules perspective

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 131 / 147

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The preference perspective for tactics (Auto/Post)

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 132 / 147

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 133 / 147

Animation of Event-B models. Use of model checking

The Rodin platform is equipped with a model checker offering the capability
to

I animate Event-B models at all refinement levels
I model check properties expressed in temporal logic

Benefits
Exhaustive verification if the models are finite
Assistance to the design of Event-B models by identifying counter-examples

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 134 / 147

Animation of Event-B models. Use of model checking

The ProB model-checker

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 135 / 147

Animation of Event-B models. Use of model checking.
What is ProB ?
A useful tool for analysing and debugging Event-B models.
=⇒ It is required to bound models (if they are not) to use ProB

A list of
Events

States History

Error Status

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 136 / 147

Animation of Event-B models. Model checking with ProB ?
Rodin Platform > Preference > ProB

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 137 / 147

Animation of Event-B models. Model checking with ProB ?
Verification of Invariants

Enable Events
Check Invariants

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 138 / 147

Animation of Event-B models. Model checking with ProB ?
Guards Checking

Guards Checking

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 139 / 147

Animation of Event-B models. Model checking with ProB.
Deadlocks Freeness

Deadlock Freedom
Checks > Model Checking

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 140 / 147

Animation of Event-B models. Model checking with ProB.
LTL in ProB

Checks > LTL Model Checking

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 141 / 147

Animation of Event-B models. Model checking with ProB.
LTL in ProB

The following formula can be verified.

G{cr = ∅}

Adding_Rover → Adding_Rover → Start_to_Move → Start_to_Move →
Move_to_Stop_by_Controller → Stop_to_Remove_by_Controller →
Move_to_Stop_by_Controller → Random_Conflict

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 142 / 147

Animation of Event-B models. Model checking with ProB.
LTL in ProB
The following formulas can be verified.

G{Temperature >= 7&Temperature <= 35} No Counterexample
G{Temperature < 35} Counterexample

G {Temperature > 7 } Counterexample
X {Temperature < 7 } Counterexample

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 143 / 147

The RODIN paltform

It is an IDE (Integrated Development Environment) for the development of
Event-B models
Developed on top of Eclipse
Many associated tools

I Model editors, refinement
I Proofs, model animation
I Validation of models using model checking (ProB)
I Code generation
I Many PlugIns (UML, BPEL2B, THEORY, Prouveurs, etc.)

Available on http://www.event-b.org

Used for TP at ENSEEIHT

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 144 / 147

http://www.event-b.org

Plan

1 Introduction

2 Propositional logic

3 Predicate logic

4 Set theory

5 Modelling of Systems

6 The Event-B method

7 Proof with Event-B

8 The Rodin Platform

9 Animation of Event-B models

10 Conclusion
Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 145 / 147

Conclusion

Event-B is a system modelling method which uses refinement and proof
Incremental development approach
Many developments in areas like

I transport,
I electronic cards,
I cyber-physical systems,
I embedded systems, pacemaker, insulin pump,
I information systems, web services composition, voting machines,
I mathematical engineering, proof and demonstration of theorems,
I etc.

System modelling and high abstract level reasoning
Simple mathematical foundations
Availability of a tool with many plug-ins

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 146 / 147

FIN
yamine@enseeiht.fr

nsingh@enseeiht.fr

Y. AIT-AMEUR, N. SINGH (IRIT/INPT-ENSEEIHT {yamine, nsingh}@enseeiht.fr})Formal development of complex systems. 2020 147 / 147

	Introduction
	Propositional logic
	Predicate logic
	Set theory
	Modelling of Systems
	The Event-B method
	Refinement of Event-B machines

	Proof with Event-B
	Proof activity
	Proofs with Event-B and the Rodin platform

	The Rodin Platform
	Animation of Event-B models
	Conclusion

