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Introduction

Many complex systems are present in engineering, finance, marketing, etc.

e Complex systems with integration of
» software
» hardware
» plants
» communications
» humains

@ Need to handle the environment in which a system evolves"

e Input/output, close/open loop

TAMELR, N SINGH (IRIT/INPT ENSEEINT

Frrmul developrment of compins systems




Introduction

Quelques probléemes

o Expression of needs, requirement analysis

» fonctionnal,
» non fonctionnal

@ Specification of systems
@ Design of systems : composition, decomposition
@ System Validation / Verification, in particular for critical systems

o SystemCertification according to certification authorities or standard
requirements

Which techniques ? Which methods?

8-
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. AIT-AMEUR. N SINGH (IRITINPT-ENSEEST | Formal deesiopoiont of camphie sstins. November 2019 57143

Introduction

@ Science of language (Jean-Piaget encyclopaedia “Logique et Connaissance
Scientifique" or "Scientific logics and knowledge")

' If we refer to whom is talking, or more generally |
to users of the language, this investigation relates to the '
pragmatics.

If we make abstraction of language users and
analyse only language expressions and their meanings,
then, we are dealing with semantics.

Finally, si if we make abstraction of the meanings
to analyse only the relations between expressions, then,
we are dealing with syntax. |

These three elements are constituents of science
of language or semiotics. |

e
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Introduction

The development of complex systems requires the definition of modelling
languages offering means for
o expressing and defining abstractions of these systems in order to

» design and build these systems,
» reason on these systems to check their properties,
» predict their behaviour, if possible in any situation/context

@ These languages shall
» be rigorously/formally defined
* non ambiguous
* expressive
» support the capability to express different system facets, views, etc.
* functional
safety and reliability
real time
architecture
simulation

* * % * %
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Introduction
Model, associated to semantics
@ Interpretation of the understanding of a situation,
@ Description of entities and their relations
@ Definition borrowed from M. Minsky "Société de I'esprit”

For an observer A, M is a model of object
O, if M helps A to answer the questions he/she
has on O

@ The definition of system models at different abstraction levels allows
designers to reason on the system to design
Models shall
@ be rigorously defined
@ offer reasoning mechanisms
> interpreters,

» proof systems,

» simulators,

» analysers,

» type checkers, =

> etc. SR
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Introduction Plan

Objectives of the lecture © Propositional logic
@ Present a formal system development method based on

» first order logic,

» set theory,

» state-transitions systems

» refinement/composition/decomposition

Plusieurs liens avec les cours déja effectués

@ Modélisation.

e GLS
e VAS
@ Spécification formelle
e ..
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Objectifs Propositional logics

Propositional logics operators.

L | Constant False
@ Recalls of basic logics concepts T Constant True
-A Negation
@ Handling proofs and proof system AAB Conjunction
AV B Disjunction
A=1B Implication
A < B | Equivalence
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Propositional logics Propositional logics

A— B=-AVB
AsB=(A—= B) A (B— A)
ANA=A _
ldempotent AVA=A Distributivi AAN{(BVC)=(AAB)V(AAC)
AN-A=L ' Y] AV(BAC)=(AVB)A(AVC) |
AV-A=T -(AAB)=-Av-B |
AnLl=1 ﬁ(A(vB):;A/\ﬁB I
ANT = A AV(-AAB)=AVB
AV L=A De Morgan | 4 A (~AVB)= AAB
AVT—T AV(ANB)= A
A=A AAN(AVB)=A
.. AANB=BAA
Commutativity AVB=BVA
' e (AAB)AC=AA(BAC)
| Associativity (AVB)VC=Av(BVC)
= <ol
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Proofs and proof system Proofs and proof system

Sequent and inference rule

list_of _hypotheses +  conclusion

The list_of _hypotheses may be empty {e.g. case of a theorem)

@ Sequent

@ Definition of axioms.

e Useful for definitions.

@ Inference rule. Generic form A, or Au A i i
. c’ C f = (Axiom for hypothesis)
> Ais a set of sequents (may be empty) called Antecedent . .
e fi h
» Cis a Consequent sequent AFA (Axiom for extended hypothesis )

@ Inference rule

list_of _sequents

sequent
The list_of __sequents may be empty (e.g. case of an axiom) —— S
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Proofs and proof system Proofs and proof system

® Definition of inference rules. @ And Elimination (E) and Introduction (1)
@ Useful for inferring (deduction) of new sequents
r'-AAB
“rra - &
@ Implication Elimination (E) and Introduction (1)
r’-AAB
FrFA r-A—B (E2) T (E2)
r-8 -
g rEATEE
SR TEAAB "
rrasg ()
—u L= o]
N BEN=S0N
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Proofs and proof system Proofs and proof system
@ Or Elimination (E) and Introduction (I) @ Handling negation
M=4
-6 . Tra (B
Trave )
THA L ————————  (Tiers Exclu)
“rave ) r-Av-A
r’FAVB T;A-C T;BFHC N(A— L)k 1L .
e (Ev) FEA (Pierce)
o Elimination is useful for case base reasoning Be careful, non constructive features.
— a—\u——
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Proofs and proof system. Tactics

Tactics
@ Tactics are compositions of inference rules
e Useful to handle big proof steps

@ "Proof programming"

» unfolding/folding
» choice
» iteration

Proof systems implement
@ inference rules and
@ tactics

definitions
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Predicate logic, first order logic (FOL)

dx.P | Existential Quantification

Vx.P l Universal Quantification

Introduction of predicates, with variables, relations and functions.

° P(xi,...-Xp)
o P(f(x1),.--,8(Xn—2,Xn—1),Xn)

where
@ P is a predicate symbol

e f and g are function symbols

¢ AFT-AMEUR N SINGH [IRIT INPT-ENSEEIHT Formal development of comples systems.

Plan

© Predicate logic

o
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Sequents in predicate logic

M-vx.A

w (Ev form 1)
I-Vvx.A
TA_- (EV form 2)
r-A
Trwa (W (forx¢ FV(D))

The [t/x]V notation represents the substitution, in W, of the occurrences of x by t

LIm
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Sequents in predicate logic

MN-3dx.A

-—r—|_—[ﬂ;]—/—4— (Eg form 1)

(for t = F(FV(I) U FV(A)))

M-t ] x]A
Traxa (9

r-3x.A T, AFB
r-B

(Eg form 2)  (for x ¢ FV(I)U FV(B))

— ==
==
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Plan

© Set theory
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Sequents in predicate logic

Refinement of the language. Introduction of Equality

o Extension of the definitions of predicates avec by the introduction of the
Equality predicate

Predicate ::=
Expression ::=
Variable :=

Expression = Expression

Introduction of terms with
@ variables x, y, z -
@ constants a, b, ,c, ---
o functions f, g, ,/ ---
Examples
o Terms a, x, a+b, f(x,y,a), h(g(x),a),y)
o Predicates P(x), x=a P(f(x,y,2),z), 1(x)=a
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Objectives
Recall of basic notions in
@ Set theory
@ Relations
@ Functions
="
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Sets

@ Introduction of the Belongs To predicate E € S where
» E is an expression

» Sis a set

@ Introduction of set constructors.

@ Axiomatisation based definitions £

Remark.

@ This lecture does not represent the whole axioms (definitions)
@ Part of these axioms are given.

@ They are relevant for the understanding of next steps.

N SIGH (T INET.ENSEEINT: | Formal disvelanment of comples systerrs November 2018
Sets. Basic operators
® Inclusion SC T
@ Associated axioms
SCT & SeBT)
S=T £ SCTATCS
@ Define an order relation on sets.
¥ AIT-AMEUR N SINGH (IRIT INPT-ENSEEIHT | Feamil devalaipment of comibes systeris Nowember 2014
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Sets

Three basic constructors are considered

Let S and T be two sets, x a variable and P a predicate. The follwoing set
constructions are defined.

@ Cartesian Product S x T

@ The set of Subsets or powerset P(S)

@ Definition of sets by comprehension {x | s € SA P}

—— — e

These constructs are used to define other set operators.

e
[ \__<‘ —
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Sets. Basic operators

Union U
Intersection N
Difference (Subtraction) | —
| Extension  — }
' Empty Set 7]

@ A set of axioms is associated to each of these operators.

n—

__L__d‘ —
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Sets. Generalised operators

| Generalised Union union(S)

| Quantified Union Ux.(x € SAP)

| Generalised Intersection | inter(S)

| Quantified Intersection | Nx.(x € SA P) |

@ A set of axioms is associated to each of these operators.
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Binary Relations
Recall of basic notions
@ Partial / Total I
® Surjective / Injective / Bijective
Specific definitions of binary relations
Partial Surjective binary relation | S<» T
Total binary relation S«>T
Total Surjective binary relation S«» T
Axiomatisation
S<»T |freS«» Tthenran(r)=T
S« T | IfreS« T then dom(r) =S
S«» T | IfreS«» T thendom(r)=S A ran(r)=T
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Binary Relations

Binary Relation ST
Domain dom(x)
Co-domain (Range) | ran(r)
Inverse r1

@ Axiomatisation. A set of axioms is associated to binary relations.

reSoT £ rCSxT
Ecdom(r)y £ 3y(E—ycr)
F € ran(r) £ Ix(x—=Fer)
EsFer! 2 FoEcr
— =
JR=h
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Binary Relations

Manipulation of binary relations

® Restriction and Subtraction

Domain Restriction | S<a T
Range Restriction ST
Domain Subtraction | S<4 T
| Range Subtraction Se T

Axiomatisation

SaT | S<aT={x—y|x—>yeT A xeS}
ST | SpT={x—y|x—>yeT AyecT}
S54aT | SaT={x—>y|x—>yecSAxgS}
ST |SepT={x—y|x—yeSAx¢T}
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Binary Relations Binary Relations

Manipulation of binary relations

@ Image, composition, overriding and identity Manipulation of binary relations

@ Products and projection

Image r[S]

Composition | p; g Direct Product PrXq

Overriding ptq First (Left) projection pril

Identity id(S) Second (Right) projection | prj2
Parallel Product pllg

Manipulation of binary relations

o Image, composition, overriding and identity Axiomatisation

=i x> (y—=z) | x—yeEpAx—=ze
r[S] r[S]={y|3x€SAx—y} Zr;e;q Zg(?) :{~x | )SL 5 E) l} y=Fp P}
; ,q- TeU= = : -
i Z.pqq_p{i iﬁyf@zii ;—é pAZy € Q) pi2 | pir)={y [x—yer}
= E pllg | pllg={lx— y)—»(m—n)|x—mepAy—>ncgqg

p<q| p<sq=qU(dom(q)<r) | Lo =1 L ) !

id(3) | id(S) = {x = x|x € 5} e R 2
. AIT-AMELE. N SINGH [IRIT, INPT-ENSEEIMT Earmial devalngmimt of conmples syptams. November 2019 37/143 ¥ AIT-AMEUR. N SINGH [IRIT INPT-ENSEEIHT | Forma| devslogument of comples ysteims November 2019 38/163

Binary Relations Functions and Functions Operators

Functions

Partial Function | S+ T
Total Function S—»T

Manipulation of binary relations

All these operators are associated to

e axiomatic definitions (axioms)

@ properties Axiomatisation. A Function is a Relation
@ definitions in predicate logic feSwT 2 feSo TAFLf=id(ran(f)) ]
feS—>T 2 feSwTAS=dom(f) |

[NFT-ENSEEIHT |
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Functions and Functions Operators

Other Function definitions

Partial Injection S T |
Total [njection S—T ] r
Partial Surjection | S+ T
Total Surjection S»T
[_Bijection ! S5—~T |

Axiomatisation

ST |Sw»T={f-feS»TAfleT+S}
S—T | S5—T=5+~TNS—>T

So»T |Sw»T={f-feS5+TAran(f)=T}
S»T | S»=T=5+-»TNS—>T

S»T | S—>»T=5—-TNS—»T

—=1
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Logic notations

Rewriting logic expressions

@ Let us consider the predicate
f~L.fcid
® It can be successfully translated to

Vx,y,z- x—y€EfAx—zef—=y=1z

Applying rewriting

f~L.fcCid

Vy,z- y—~ze(fLf)=y—zcid

Vy,z- ymze(f Lf)=y==z

Vy,z-(3x- y»xef TAx—zef)=y=z
Vy.z:(3x- xryefAxszef)—=y=z

| VX,y,z- xyeEfAxmzef=y=z

Formal demjapment of comgplee systrmy November 3038 43143

¥ AIT-AMELUR, N SINGH [IRIT/INPT ENSEEIHT |

Definition and Function Application

Lambda expression
@ Definition of a Function
| Ax.(STE) or Ax.(x € S| E(x)) |
@ Application of a Function
lam beM.(x€S|E(x)) 2 E(a=b]
witha€e S J

Well definedness
@ Let f be a Partial Function, then
| b=f(a) £ a—bef |
This property defines a Well- Definedness condition for a Function Definition
a € dom(f)

L2 | =

=1l
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Recap of the whole introduced notions.

Recap document from Ken. Robinson (Uni. South Wales - Sydney -
Australia
@ See the document providing a recap of the set of constructions introduced
previously.

@ The correspondences between mathematical notations and ASCII code
available in this document are useful for the users of the Rodin Platform. )

This document is ditributed to Students
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Plan

© Modelling of Systems
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General notions on Systems

States as a set of variables
e A state S is defined as a set of state variables {x,---}

@ State variables are valued. They are associated to variable values.

States evolution
@ A state S may evolve after the occurrence of an event

@ Notation x — x’ where

ev is an event
x et x’ represent respectively a state variable x before and after the
occurrence of event ev.

Y AIT-AMEUR, N SINGH, (JRIT, INFT-ENSEETHT

Formf devsiopment of camplec gystems.

General notions on Systems

@ A system is observed through its evolution during life time
@ Observation of the system elements/components changing over time
@ A system is characterised by state
@ A state is made of
» /contextual / fixed / non-modifiable information defined is a dans la theory
containing all the required definitions and resources allowing a system designer
to describe a state
» modifiable / flexible information that record the changes of the system state
during time
associated to the system to design, to analyse, to simulate, etc.

System Constants and variables
e Constants define contextual / fixed / non-modifiable information

o Variables define modifiable/ flexible information

When the systems are described, using the mathematical constructs presented in
previous chapters Constants and Variables are defined

Remark. Note that other system modelling languages are available : type based,
synchronous/asynchronous, simulation, semi-formal modelling languages, ===

programming languages, etc. =l
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General notions on Systems

Before-After predicates as a relation on states

@ Event ev defines a relation on states.

BAA(x,x') is a Before-After Predicate characterising the event ev.
Example.
If ev is x := x + 1 then BAA(x,x') isx' =x+1or

BAA(x,x')=x"=x+1

This definition is the assignment definition of Hoare Logic
{[x/ElW}x = E{w}

First order logic for BAA

@ Again, in the course, we rely on first order logics to describre Before-After
Predicates

@ The logic notions presented in the previous chapters will be used.

Remark. Note that other logics could have been used to describe such a
relation : temporal logics, dynamic logics or type systems o=
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General notions on Systems

o BAA describes a single state variable change only.

@ We need to describe evolution of states along time

Traces as sequences of state evolutions
@ A trace is a sequence of events occurrences
xoi>x1 i>x2i>X3i)x,;&xsixGim...xnian...
|

@ A trace with events which do not modify state variables can be described as
well (presence of 7- transitions )

e ez T e3 es T e en
Xg —>X] —> X2 ——> X3 ——> X4 —> X5 —>Xp —> X7...Xnqg — Xp4gl---
The 7 events describe stuttering steps.
@ The set of all traces allows a designer to observe the behaviour of a system |

-
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General notions on Systems

Vi S N. S(Xi)

@ To prove this kind of properties we rely on induction on the length of the
traces
» The safety property holds at initial state, at initialisation
» If this property holds in any state x; (recurrence hypothesis) and it still holds
after the occurrence of any triggered event, then this property holds for all
states of traces of the system
@ The proof of this property may be complex when it is realised on the whole
set of events of a system
» Use refinement/abstraction to reason on "less complex" or on abstract
traces which hide some events (using T events) of the concrete trace
» Refinement/abstraction shall preserve the link between abstract and concrete
traces
Need to define a refinement/simulation relationship

Y. AIT-AMEUR. N SINGH (IRIT /INPT-ENSEEIHT { Frmial dewilopoiant of comphex Mt Nevember 2019 517143

General notions on Systems

@ A safety property S on a state x asserts that nothing bad happens in state x
Notation S(x)

@ An invariant is a safety property in all the states of all the observed traces

@ The property S shall be observable in all the states of the system
S(Xo) i) S(Xl) i) S(Xz) ;> S(X3) i> S(X4) i) S(Xs) L) S(Xﬁ)
25 8(x7) .- S(Xn) == S(Xnt1) - -

o We write

Vi e N, S(Xi)

Yo AIT-AMELIR: N SINGH [IRIT/INFT-ENSEEIHT | ol demeels ! ; Nowmber 201% 50/ 143

General notions on Systems

@ A liveness property P leads_to Q for a state x asserts that there exist a
path in the traces that lead from a state x where P holds leading to a state
x" where @ holds

Notation P ~ @

@ A liveness property P ~~ @ asserts that a state x’ where Q(x’) holds is
reachable from a state x where P(x) holds

@ The property P ~ @ is defined on a trace such that when P(x;) holds, there
exists a future state x;, j > i where Q(x;) holds.

e e T e3 (=X T
Xi — Xit1 — Xj+2 — Xi+3 — Xi+4 — Xit5 — Xi;6
€6 €j
— Xi+7 - - - Xj 7 Xj+1 ...

o We write
For astate x. ie N. JjeN. j>i.

ATT-AMEUR, N SINGH [IRIT INPT-ENSEEIHT | “Farmil development of complex systems.




General notions on Systems

Forastate x;, ieN. JeN j>i P{x)=— Q(x)

e To prove this kind of properties we rely on the definition of a variant i.e. a
sequence of decreasing natural numbers
» We know that each sequence of decreasing natural numbers is finite and
converges to 0
Let xx be a state in the trace. Initially xx = x; (i.e. k = 1.
Then, k increases to reach the suited state
When state x; is reached, then x, = X
Here, the sequence j — k is a decreasing sequence

Yy vyvey

@ This reasoning holds for any liveness property
@ Again this proof is an induction. We shall show that

» j— kis a natural number
» j— k is a decreasing sequence

a—p——
=
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© The Event-B method
@ Refinement of Event-B machines
a—u-—
=
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Requirements for a system modelling language

© The values of state variables x belong to a set of licit VALUES
— Require to define this of these sets

© The events are relations on the set of states {evi,...ev,}
= Require to define events as transitions from a state to another one

© Invariants express, on traces, properties of the system
— Require of a language to define such properties

@ Invariants are proven on traces
= Require a proof system (in particular induction)

© The definition of less abstract traces allows to express properties "simpler” to
prove
= Require a refinement/abstraction operation which links abstract
traces to concrete traces of two systems ie.e simulation relationship

. ATTEAMELUR N SINGH [IRITINPT-ENSEEIFT | Farmal davelopmen commrpbies -3TAM: Mwmr 58/143

The Event-B method (J.R. Abrial). Overview

Event-B is a formal method for system development

@ It is based on
» Set theory and First order Logic
@ An Event-B model defines

> a state of the system to model
» an initialisation event and a set of events characterising state evolutions and
changes
» an invariant formalising the safety properties of a the system
» Other properties of the system e.g. liveness, deadlock freeness, determinism,
etc.
» A refinement operation allowing to describe a concrete system which refines
an abstract one.
* It allows adding design decision and precise information on the behaviour of the
system to design.
* |t preserves the properties of the abstract system in the concrete system thanks
to a gluing invariant.
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Event based system modelling with Event-B : Modelling
Principles — Event-B

@ Event based systems modelling

@ Concurrents systems

e Software, hardware (or both) systems

o Refinement and proof

@ A system is seen as a state-transitions system

@ Refinement offers a decomposition mechanism of state-transitions systems
@ A simulation relationship links an abstract model and its refinement

@ Simulation is a requirement for refinement correctness

@ "Correct by construction" approach i.e. the system is explicitly correctly

built

= _ﬁ -
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Machines and contexts

Machine Defines the system mo-
del as a state-transitions (state
variables and events)

@ REFINES an other machine
@ SEES a contéxt

Context It contains the defini-
tions of the domain concepts nee-
ded to model the system. It also
defines the proof context.

® VARTABLES of the model @ EXTENDS an other context

o INVARIANTS satisfied by @ SETS declares news sets

h i - .
the variables (st?te) @ CONSTANTS défines a list of
e THEOREVMS satisfied by the constants

variables (state) and
deduced from invariants
and seen contexts

@ VARIANT decreasing

@ EVENTS modifying state
variables

@ AXIOMS defining properties
of sets and constants

@ THEOREMS a list of theorems
deduced from axioms
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Model definition with Event-B

@ Models are defined incrementally
> A first/initial abstract machine is designed
» A sequence of refinement of an existing machine is designed incrementally
moving from an abstract level to a concrete level

@ Models rely on sets and constants defined in a context Event-B component.
The definitions are given by axioms and theorems may be introduced.
@ Three relations define links between Event-B components
» The sees relation expresses the use, by a machine, of constants and sets
defined through axioms and fulfilling theorems of a context
» The extends relation expresses the extension (enrichment of a context) by
adding new sets, constants, axioms and theorems
» The refines relation states that an Event-B model (machine) resp. event is
refined by another Event-B model or event reps.
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Event B contexts

CONTEXT

ctx Context
| EXTENDS @ ac extends the context ¢ and adds

actx new concepts

SESTS ® s sets defined by comprehension or

CONSTANTS ntention
c @ k definition of constants

AXIOMS @ axl axioms defining sets and
ax; o ... constants

THEOREMS e T(x) set of theorems deduced from
Tei @ ... axioms and theorems.

END
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Event B Machines

MACHINE Machine
m @ m abstract machine corresponding
REFINES to the system model
SEaEmS @ am machine refined by m
ctx @ c visible contexts of machine m.
VARIABLES They define the context '(m)
X | @ x variables defining machine
INVARIANTS machine m state
I(x) @ I(x) Invariants de la machine m
THEOREMS
T(x) ® T(x) Theorems deduced from the
VARIANT context and invariant
v @ v expression defining a decreasing
EVENTS variant (either a natural number or
evl = ... a set)
ev2 = ... ® evl, ... list of machine events
describing state changes with at s
END least an INITTALISATION event r=_
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Event-B : Events

o Initialisation
» Definition initial values of state variables. x : |P

o Modification of state variables with Before-After Predicates BAA
» BAA(x,x'). Example x' = x + 1 pour x := x + 1 or for x :| (x' = x + 1)

o Three types of events

avent 2 = event_3 =
event_1 = | WHEN Aw!\ll-l\!,:}iE G
BEGIN G(x) )
x - | BAA(x, x") THEN THEN
. ’ )
END . x : |BAA(x, x"}) x 1 |BAA(x, x, 1)
END
Non guarded event
Guarded Event Parameterised Event

where
@ x is a (set of) variables
e [ is a list of parameters
e G(x) is a boolean expression on state variables expressing a guard
e BAA(x,x"}) and BAA(x,x'. 1) are before-after predicate recording e
a state change .
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Modification of state variables
@ State variables modified by actions or substitutions in events
o Different types of substitutions (variables modifications) are available
@ Substitutions are characterised by Before-After Predicates BAA

Skip Null/Empty Action

x:=E Becomes expression E (Simple Assignement) |
x:€S Becomes element of S (Arbitrary choice in a set S) |
x:| P Becomes such that P (Arbitrary choice such that P
f(x) := E | Equivalentto f ;= f < {x — E}

@ Substitution x :| P encodes all the other substitutions. Its BAA is P(x, x’)
@ The previous substitutions can be extend to multiple variables modifications
Xiy...Xn | P
]

@ x:| P and x :€ S are non-deterministic actions s
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Events. Definition of associated BAA

Event : E Before-After Predicate (BAA)

begin x : |P(x,x’) end P(x,x")

when G(x) then x : |P(x, x’) end G(x) A P(x,x")

any t
where G(t,x)
then x:|P(x,x’,t) end

It (G(t,x) A P(x,x',t))
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Events. Definition of associated guards Machine Proof Obligations

| [ | Proof obligation |
Event : E Guard : grd(E) : = - ——————

| (INV1) || Invariant preservation at initialisation
begin S end TRUE (INV2) Invariant preservation by each event

(DEAD) Deadlock freeness
when G(x) then T end G(x) (SAFE) Theorems shall be prove,
hall be feasibl
any t where G(t,x)then T end || 3t.G(t,x) ‘ (F1S) Events shall be feasible

==
—— ;_d —

(LN
|l
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Machine Proof Obligations Event based system modelling with Event-B : Modelling
Principles — Event-B

| || Proof obligation

(INV1) M(s,c) F Init(x) = I(x)
(INV2) M(s,c) F {x} A BAA(e)(x,x") = I(x’) Components of an Event-B model
@ Contexts
(DEAD) I'(s,c) F I{x) = (grd(e1) V ... grd(e,))
@ Machines
(SAFE) M(s,c) F I{x) = T(x)
(FIS) M(s,c) F I(x)Agrd(E) = 3x".P(x,x’)
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Event-B models. Handling contexts Event-B models. Machine definition

Machines define a state-transitions system.
@ Machines. Initial state + events (transitions between states).

Contexts define theories associated to models.

@ Machines : Variables (état),

@ Definition Of the theories required by system models Events (transitions), ian Spec
o Contexts are imported by machines using the Sees Clause o Invariants I(s, ¢, xa), Theorems x’;:(s(fcfx:’})
Contexts T(s,¢,xa) =t itlilistid =
p—— e constants (c) ® Proof Obligations | be‘: | tniels, €, )
zit;iams . o sets (s) @ Non determinism Event A.n_event-Ang:ie;e

Axi A . . H H H Gallisicxg)
xioms Ax(s, c) e Axioms Ax(s,c) @ Interleaving semantics with _Catlscaa

Th s i
eorems Te(s, €) stuttering x4 ) ACLUs.c 0 xg)

End ® Theorems Tc(s,c) Ead
@ Traces correspnd to sequences of Event Another_event =

. . ‘When
event triggerings GGals,cxa)
en

The
X 1 AC2s.cx0.,)
End

End

—a—_

-— ;C. -
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Event-B models. Machine definition Event-B proof obligations - Core POs (recall)

@ We recall the three types of Events

Evenement_3 = @ POs for theorems

. | évenement_2 = Wy /
événement_1 = WHEN WHERE G A(S, C) = TC(S, C} ‘
BEin:\l|BAA(X,X/) THENG(X) , THENG(I’X) A(57 C) A "(57 C,X) = T(57 < X)
| END g 1BAAGX) x: |BAA(x. x'. 1) @ Invariant preservation PO
Non guarded event END = Als,c) A l(s,c,x) A G(s,c,l,x) A BAA(s, ¢, I, x, x")
Guarded event Parameterised event | =I(s, ¢, x’)

e Event feasibility PO
Als,c)Nl(s,c,v) A G(s,c, [, x)
=3v".BAA(s,c, I, x, x")

@ where

» x is a (set of) variables

> IG|(s .:; !ist cl:‘ pTrameters . b ‘ ) o Variant PO
» G(x) is a boolean expression on state variables expressing a guar Al AT c. A Gl clX)= Vis.c.x)EN
» BAA(x,x") and BAA(x, x’, 1) are before-after predicate recording ) [ Als, ) A (s, €,x) (s.¢,1,x) (s, ¢,x) l
a state change e Variant PO F
‘ Als,c) A l(s,c,x) A G(s,c,l,x) A BAA(s, ¢, I, x, x7)
o Correspondence between an Event-B event and a TLA action (TLA-L. =V(s,c,x") < V(s,c,x)
Lamport) '
e Events describe a state-transitions system with interleaving = ==
semantics for events men TIis
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Event-B proof obligations - Other POs An example
Other PO are added to the previous ones
@ Deadlock freeness (DEAD) : disjunction of guards

» A single guard is true at each event triggering {Deterministic system)
» At least one guard is true at each event triggering (Non determinism)

» No gaurd may be true at event triggering (The developed system may C°Zzzts
deadlock) sets

. . MESSAGES

@ Liveness and reachability (LIV) Leads_to or P ~~ Q@ or AGENTS
 when DATA
constants
P n
then infile
axioms
Q axml:n €N
imilar to Live i ral logic. mple, in LTL wi axm2:n#0
S ness in temporal logic. For example, ith leads_to e ol c 1..n— DATA
noted ~~ operator or © end

@ Refinement

» Preservation of the invariant thanks to the introduction of a gluing invariant

» Do not allow an event of refined machine to be triggered infinitely many times

(use of a variant). This a livelock
> The refined system does not deadlock more than the abstract one T .
= ==
° A= =
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An example (cont.) An example (cont.)
sending a message
ANY
a
b
MACHINE agents | WHERE
SEES data grdll : a € AGENTS
VARIABLES grd12 : b € AGENTS
sent INITIALISATION grdl:a— b ¢ sent
got BEGIN THEN
lost actl : sent :== & actll : sent ;= sent U {3 — b}
INVARIANTS act2 : got == & END
invl @ sent C AGENTS x AGENTS actd : lost == @
inv2 : got C AGENTS x AGENTS | END | getting a message ] —
inv4 : (got U lost) C sent ANY i;;s"ng a messge
inv6 : lost C AGENTS x AGENTS a 5
inv7 : got N lost = & b b

WHERE
grdll : a € AGENTS
grd12 : b € AGENTS
grd13 : a — b € sent \ (got U lost)

WHERE  grdl:a € AGENTS
grd2 : b € AGENTS
grd3 :a > b € sent \ (got U lost)

THEN
THEN N L
act1l : got := got U {a — b} EN_;«:tl : lost := lost U {a — b}
END

AT AMEUR N SINGH [IRIT INPT-ENSEEIHT s - comi " Nowimbey 2019 T5/143 AIT-AMEUR N SINGH [IRIT INFT-ENSEEINT | Fromal development: of coople yyvizi I  Mowwbes 20197 7/ 183




Another example

@ An example of .
i . Machine M1
speci Ication. Variables P, carts, selection_done

Invariants

@ A single event selection P C PRODUCTS
carts C SITES x PRODUCTS

selection_done € BOOL
sefection_done => ran(carts) = P
‘ Vp, p € ran(carts) = card{carts~1[{p}]} = 1

Events
Event initialisation =

Context CO
Sets

PRODUCTS, SITES P .€ P(PRODUCTS)

carts ;= &
selection_done := FALSE

End
Event selection =
Any someCarts
‘Where

‘ someCarts C SITES x PRODUCTS

® Many refinements are
bl ran(someCarts) = P |
possible Yp, p € ran(carts) = card(carts—1[{p}]) = 1
Then
carts := someCarts
selection_done := TRUE
End

‘End

a—e——

— \__é -
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Refinement in Event-B. Proof obligations

Guarded events

Let us consider an abstract event and the corresponding refining concrete event
such that

EVENT = | | EVENT =
when when
G(x) H(y)
then then
x := E{(x) y .= F(y)
end _ end

Invariant preservation proof obligation

Let /(x) and J(x,y) be the invariants , then we need to prove the refinement
invariant preservation as

) A Jxy) AHy) = Glx) A HE(x), Fly))
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Refinement in Event-B

@ New events may appear.

» They refine the Skip event
» Definition of a simulation (weak) relation

The concrete events (refined events) shall not introduce more deadlock
than available in the abstraction

e The set of new events may lead to liveness (due to stuttering)

» Need to use a decreasing variant to allow triggering of the abstract events

@ The abstract model use variables x while the concrete ones use variables y,
then
> a gluing invariant J(x,y) shall link abstract and concrete variables x and y

Each abstract event is refined by a concrete event

Fovmal gavniopment =f compler yysrme
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Refinement in Event-B. Proof obligations

Parameterised events

Let us consider an abstract event and the corresponding refining concrete event
such that

EVENT = EVENT =
any v where any w where
G(x.v) H{y.w)
then then
x = E(x,v) = F(yw)
end | end

Invariant preservation proof obligation
Let /(x) and J(x,y) be the invariants , then we need to prove the refinement
invariant preservation as

I(x) _/\_J_(x,y) A H{y,w) _:i Av. (G(x,v) A J(E(x,v), F(y,w)))
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Refinement in Event-B. Proof obligations

New events

Let us consider a new event refining the skip event as follows

end

Invariant preservation proof obligation |

Let /(x) and J(x, y) be the invariants , then we need to prove the refinement |
invariant preservation as

[ I A Jxy) A Hly) = J(xFly) | |

Remark. In Rodin, no need to declare the event Skip of the abstraction.  s—w==

=

By default, any new event refines the Skip event. =:
P e —

AIT-AMELR. N SINGH [JRIT/INET-ENSEEIHT ||

Nevember 2919 81/143

Refinement in Event-B. An example

Introduction

© The objective is to design an information system to manage orders and
invoices

@ To issue an invoice, the state of an order shall be changed (moving from
state "pending" to "invoiced").

On an order, only one reference to an ordered product is available together
with a quantity. Quantity may be different from an order to another.

A given product reference may appear on several orders.

The state of an order moves to "invoiced” if the ordered quantity is less or
equal to the quantity of available products in the stock.

— -
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Refinement in Event-B

Context C1
Extends CO

Sets s,

Constants ¢y

Axioms A(s. ¢. sp.Cr)

Theorems Te(s. c. sp. ¢r)

End

@ Extension of Contexts.

@ Machines are refined.

New variables.

New events.

Gluing Invariants.

Refinement Proof
Obligations.
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Spec__Ref
Spec
C1

Invp(s.c.sp crox.y)
Te(s.c.sr.crox.y}

I[nitialisation =
begin
y il it(s. c. ')
end ;
Event An_event_ref
Refines An_event =
Any e
‘Where
Glrlescsrcr. y)
Then
y :l ACl(e,5.650.¢r. y.y')
End
Event Another_event_ref
Refines Another_event =
‘When
G2p(s.¢,57,¢r, )

y il AC2(s,c.5r.6r, yiy')
End
Event New_event

G3r(s,c.5r.cr. )

y i1 AC3(s.c.sp.cr, vyT)

T T ——

Nowsinber 2012

Refinement in Event-B. An example

The following cases shall be considered.

Case 1

8213

All the order references are available in the stock. The stock and the orders may change

and evolve due to

® arrival of new orders or cancellations of orders

@ the supplying of products with new quantities added to the stock

But, we do not have to take these entries into account. This means that you will not
receive two entry flows (orders, entries in stock). The stock and the set of orders are
always given to you in a up-to-date state

Case 2
We shall take into account

@ arrivals of new orders

@ cancellations of orders

@ arrivals of new quantities added to the stock

End of case study
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Refinement in Event-B. An example

model
Casel
sets
ALL_ORDERS; PRODUCTS
properties
ALL_ORDERS # @
variables
orders, stock, invoiced__orders, reference, quantity
invariant
orders C ALL_ORDERS A
stock € PRODUCTS — N A
invoiced_orders C orders A
quantity € orders — N* A
reference € orders —» PRODUCTS

initialisation
stock, invoiced__orders, orders, quantity, reference := PRODUCTS x {0}, @,&,0,2
events
END
¥ OAIT-AMEUR. N SINGH [(RIT INPT-ENSEET | Fotmal desslopiment of comples dyatarin

Refinement in Event-B. An example

_cancel_orders =
BEGIN
orders, quantity, reference : | (orders’ C ALL_ORDERS A
invoiced_orders’ C orders’ A
quantity’ € orders’ — N* A
reference’ € orders’ — PRODUCTS)
END;

new_orders =
BEGIN
orders, quantity, reference : | (orders’ C ALL_ORDERS A
invoiced_orders’ C orders A
quantity’ € orders’ — N* A
reference’ € orders’ — PRODUCTS)
END;
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Refinement in Event-B. An example

inveice_order =
ANY
o
WHERE
o € orders — invoiced_orders A
quantity(o) < stock(reference(o))
THEN
invoiced__orders := invoiced_orders U {o}
stock(reference(0)) := stock(reference(o)) — quantity(o)

END;
delivery_to_stock =
BEGIN
stock : | (stock’ € PRODUCTS — N)
END |
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Refinement in Event-B. An example

model
Case2
refines
Casel
variables
orders, stock, invoiced__orders, reference, quantity
initialisation
stock, invoiced_orders, orders, quantity, reference := PRODUCTS x {0},2,9,9,9
events

v AT AMELIR N
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Refinement in Event-B. An example

cancel_orders

Refines cancel_orders = |
ANY
o
WHERE
o € orders — invoiced__orders
THEN
orders := orders — {0}
quantity := {0} < quantity
reference := {0} < reference

END;
new_orders
| delivery_to_stock Refines new_orders =
Refines delivery_to_stock = ANY
ANY 0.q.p
p.n WHERE
WHERE o € ALL_ORDERS — orders
p € PRODUCTS qEN
| neN p € PRODUCTS
THEN THEN

stock(p) := stock(p) + n

END

orders := orders U {o}
quantity(o) :== q

Y AIT-AMEUR. NS

| END reference(o) := p
END;
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Structure of an Event-B development

@ A machine models
» the static part of a system i.e. state with state variables
» the dynamic of a system i.e. set of events

@ The properties, formalising requirements, are described in the INVARIANT,
THEOREM, VARIANT

» safety

» deadlock freeness
function of the system
reachability,

etc.

\

v

v
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Refinement in Event-B. Methodology

Some methodological principles
@ Find the right abstraction at the right abstraction level
@ Define a refinement strategy
» What are the refinement steps for a development 7
@ Write the right invariants and this, the right properties
» Model animation can help to identify the invariant
Caution
@ Introduce properties at different refinement levels, when their expression
becomes possible
@ Take advantage from refinement in order to ease the proof process

NPT ENSEEIHT [ Formial diwiopitnit of comidles syster
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Structure of an Event-B development

@ A set of machines linked by a refinement relationship (simulation)
@ Expressed requirements are handled incrementally during the refinement
process

@ Contexts are extended each it is necessary to introduce new definitions and
axiomatisations of needed concepts

@ The SEES clause makes contexts in a machine

@ Development activities : modelling, refinement, proof, animation, exhaustive
verification, code generation, close loop modelling, etc.

o Event-B method handles the development of complex systems
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Plan Proof in logic

Proof strategy for a sequent S
o Let

. A
» A collection T of inference rules of the form -

» A sequent container K, containing S at initialisation

While K is not empty
e CHOOSE an inference rule %r in 7 such that its conclusion
Cisin K
e SUBSTITUTE C in K by the hypotheses A (if there are)

 End
@ Proof with Event-B @ The proof succeeds when K becomes empty
® Proof activity @ The proof is said to be Goal Oriented

Proofs with Event-B and the Rodin platf
® Froots wi ven an ¢ Rodin platiorm The result is a Proof Tree

“—.—— =
=" ey
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The Proof Tree The Proof Tree. An example
Let us consider the following inference rules
Let us consider mr:{ inference rule Mrl jf—r? —r3
Sl 51 54 52
i 5.5
‘L | 5—r4 S r5 Trﬁ
s1 5 3 5
r3 Tﬂ
N
52 53 54 Our objective is to prove the sequent 5;
? ? ?
4
S1
@ Inference rule r3 is applied to the sequent S1 rl
@ This rule produces the sequents S2, 53, and 54 VAN
52 S3 54
? ? ?
¢ ATT-AMEUR. N SINGH (IRIT, INPT-ENSEEIHT Foemal developmunt of compies sysoms. November 019 95/ 143 ' AIT-AMELUR N SINGH [IRIT (NP T-ENSEEIHT |  devslapmes  Nowmber 20000 96/143




The Proof Tree. An example

Let us consider the following inference rules

57,53, 5 5
— 5 rl 5, r2 5 r3
Ss. Sq
5—5r4 Ttﬁ 5—6r6
5—7l'7
Our objective is to prove the sequent 5;
1
S1
rl
LN
52 S3 Y!
r3 r5 r2
4l
Ss Se S;
rd r6 r7 =

Y. ATAMEUR N SINGH (IRIT INPT-ENSEEIHT

Proof in logics

A proof in sequent calculus is a tree.

o L'application of inference rules ~» a proof tree.

@ Two types of reasoning
» Forward reasoning.

A
Top-Down Application of inference rules ?J,
» Backward reasoning.

Bottom-Up Application of inference rules % 1

@ Building the proof tree represents the proof activity
» Automatic building the proof tree using automatic provers
* Examples : Predicate provers, reasoners, SAT or SMR Solvers, static analysis,
etc.
> Interactive application of inference rules or deduction rules available in proof
assistants
* Examples : CoQ, Atelier B, Rodin, Isabelle/HOL, etc.

» Mixed building of the proof tree combing both automatic and interactive

proofs
> #* Use of proof tactics with CoQ, Atelier B, Rodin, Isabelle/HOL, TLAPS s—s—
etc. =

Y AIT-ANEUR. N SINGH [IRIT /INPT-ENSEEIHT Fermal Sernjcpmant of complex syt

Plan

@ Proof with Event-B
@ Proof activity
@ Proofs with Event-B and the Rodin platform

Formal devefopminnt of comples isstsme. Nownmber 2019 96/143
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Prover Interface : A Tree and a Palette of buttons the
inference rules

’T 1 ‘ [r8 | 1
2 E r2 | s1

r3 7 Utilisation (Press) | r4 rl

rd rl r6 N\
pp pp S3 S4
pr pr ? ? ?

We may use

[t

@ Inference Rules (r;)

o Automatic provers like pr, pp or SMT, etc.
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A Difficulty : Size of the window

B I~ L TN

r2 EJ 53 sS4 rd | S2 S3 S4

| 7 ? ot fP || pp 67

en

r6 6 r9 4

PP pp [[S5] S6

pr pr ? ?
The previous interface is not well adapted

@ Les Sequents are usually of big size (many hypotheses)
@ The Proof Tree may be very deep
N SINGH: (IRIT INET-ENSEEIHT | Farrral dewoloarment of camplex systems. i Noyember 2018 101 /143
A possible solution : Use of two windows
- A Tree Window with simplified sequents (goals only)
- Sequent Window containing the | complete sequent of interest ‘
G1
rl
H2 - 12=G2|| /I
G G3 G4
2 v4 16 pp pr || 7 ? ?
Fenétre Séquent Fenétre Arbre

¥ AIT-AMEUR N. SINGH [IRIT INPT-ENSEEIHT | Fermal devlopment of complex systoms;
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Current form of a sequent

In general, sequents issued from Proof Obligations are of the following form

HFrL=G6G

@ Conclusion is usually an implication
@ G is Goal is a predicate, usually a non-conjunctive
@ L is the set of so-called local hypotheses (may be an empty set)

General form of a sequent for the proof of invariant

H F I(x) A G(x) A P(x,x) = I(X)

v ATT-AMELI N SINGH [IRIT INPTIENSEEIHT | g T | Mowmbe2010 MRJIG
A proof step
Gl
rl
H2 - 12 = G2 N\
G2 G3 G4
| 2 r4 6 pp pr ? ? 7
Use of (Press) pp
' G1
rl
H3 - L3 = G3 N
G2 G4
[ r2 5 r8 pp pr || pp ? ?




More realistic windows More elaborated sequents

| Gl hidden ; searched ; cached local = goal
H3 rl - v ’ h v
G2 list__of __hypotheses conclusion
PP [ hidden Non visible in the sequent window
L3 G3
? searched Visible after search in hidden
G4
G3 ? cached Visible but is no more part of the conclusion
r2 v4 16 pp pr | local Visible and part of the conclusion

MNowember 2019 0514 ¥ AIT-ANMEUR N SINGH| [IRIT/INPT-ENSEEIRT | Foirnal tevefopimunt of complex wysteamn,

Forminl devslapoiimt of comples witsms.
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Plan The Rodin Platform

It is an application developed on Eclipse for the management and development of
system models supporting verification of system model correctness.
Download http://www.event-b.org

Rodin Platform and Plug-in Installation

Rodin platform o Requires Java 1.6

« Download the Core: Rodin Platform file for your platform. To install, just unpack the
archive anywhere on your hard-disk and launch the “rodin” executable in it.

« Start Rodin

Information on the latest release.

Plug-ins » Plug-ins are installed from within Rodin by selecting Help/Install New Software. Then
select the appropriate update site from the list of download sites.

Details on plug-ins.

Install the Atelier B Provers plugin from the Atelier B Provers Update site to take full
advantage of Rodin proof capabilities

Install the ProB plugin from the ProB Update site for poweriul model checking and
animation

e The Rodin Platform User manual and

Tutorial

Rodin Handbook

Formal devatopmert o complax yystems
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The Rodin Platform. Launching Rodin & definition of
Workspace

Select a workspace

Rodin Platform stores your projects in a folder called a workspace
Choose a workspace folder to use for this session.

Use this as the default and do not ask again

Cancel OK

Farmul deveicgment of compine systemy

The Rodin Platform. Creating a new Project)
File > New > Event-B Project

New Event-B Project

This wizard creates a new (empty) Event-B Project in the current Workspace

Project name: NewProject

Add project to working sets

Working set:

® Cancel Finish

Formal devejopment of compies system.

The Rodin Platform. The Rodin interface (GUI)

Toolbar
Editor View Outline View
i1 )
kY 4
- . * (S SRt !'\ L |7 e e favanice
Peerate s 0 QW QWE :-.‘ 0 Zomezn | =a
- We BT 7 e e = = i o i

Event-B o ARP2 l
Explorer s> ARPJRT = ) ; o

rPum3 Proot informazion T < O ) symocis 8 =o
s Due et e A

3
- R * RodinProclems T - °=8 77
» « pinary._sarcn

cmwagal

L 2o 19 armings 0 wor

» s Conversation aoIOSt oy - damrm e Lz
» 4 COMECIbY.COMING . Errory (3 tecw]

> CRT HOaT CoSoLt 1 marmargy (18 dem =h

\
Rodin problmes View Symbol View T

Formal dewsiopment of comples sputems.

The Rodin Platform. Creating Event-B Components

File > New > Event-B Components

New Event-B Component >

This wizard creates a new Event-8 component {machine, context, etc ) that can be opened by a multi-page editor.

Project: NewProject Browse ..
Cimganint nase: changahle
Please chaose the type of the new companent

® Machine
Context

IS4y Cancel Finish

4 {IHTT INP Formal devsiopment of comples systems



The Rodin Platform. Construction of contexts (Context
component)

Wizards

L Event-BExp 8 — B @m0 @OMO @ *changeMe @ *c1 X

I = CONTEXT
= g @m A c1 -

| @ END

S
»Ic2
»@c3
»®ca
»@cs
»@cs

~ /A~

b AIT.AMELUR. N

SINGH [IRIT INFT-ENSEEIHT

Fotmsl desslopimint of comiio pysms

The Rodin Platform. Rodin Editor for contexts
components (Context)

< EXTENDS @&
<7 SETS @&
<+ @ seul i

< CONSTANTS &

@ cstl " not symbolic Physical Unit;
T AIOG &
<+ @ axrl T not theorem i
END
| =gyt
=
AT AMEUR. N SINGH (IRTT NPT ENSEEIHT Formal devaiapment of comples sy  Novembser @1G° us/14

¥ AT AMELIR. K. SINGH [IRIT NP T-ENSEEIHT Farmal dinedopmant of somples. systems

The Rodin Platform. Construction of contexts (Context
component) with Wizards

Tt dath Lebelfs)  Precicate(s) Theorem
Element amy
Element am2
Hemant a3
More Element Cancel oK More Careel aK

FIGURE — New sets (Enumerated Set) and new axioms (Axioms)

et L1
Mdentifler  cst1
SR fom Al mtie ot theoram
Morw Cancel OK Add More Axm Cance! OK
FIGURE — New sets (New Carrier Sets) and constants definitions {Constants) L= ==
= _
. ATT-AMELR. ¥ SINGH [TRTT [INPT-ENSEEIHT Forms| developmant of complex ssterm. NS L ALES
The Rodin Platform. Building Machines
Wizards
NP MACHINE
< ,b fﬁ hd changeMe
K/ EVENTS
LR 2V .
P%CZ o E:;TIALISATION. not extended ordinary
»@c3
+Dca END
»@cCs5
»@ce
- Ao
==
=
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The Rodin Platform. Building Machines with Wizards

demifir  ven
Initisiisation  actl vard
inarang A1 (e not thacrem Expreasion

Add More Inv. Cancs] oK Cancal oK

F1GURE — New Variables, Invariants and Variants

FIGURE — Adding Invariants

Formal dewelopment of comples eytems,

The Rodin Platform. Rodin Editor for the Machine
component

D REFINES &
D SEES &
< VARDABLES @
o @ wvarl f# Physical Unit:

7 INVARLANTS &

Q@ vl ;T nat theorem I

D VARIANT &
<~ EVENTS g
D % @ INITIALISATION :  notextended ¥ ordinarv ¥ Jf
T @ evtl :  potextended Y ordinarv ¥ ff
< REFINES &
< AN &
< WHERE &
<~ WIH &

< ™A &

Foemal devsfopment of cpmples systems

Y

The Rodin Platform. New events (Events)

Labsl Parsmetar idantifier(s)

Guard abalis it D IOTICHHIR]

Action tabel |3} Action suhstitution(s}

Adc More Par. More Grd More Act Cancel

FIGURE — New Events)

SINMGH (IHIT NET-ENSEEIHT Fremal deynlapmant of comples systams.

AIT AMEUH. N

The Rodin Platform. Proof support

The RODIN Prover

Framat desslopmemt of complis systamm
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not theorem
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The Rodin Platform. Interface (GUI) of the Rodin Prover

Event-B
Explorer

Selected

Proof Tree Name of POs
Hypotheses

il
S g
oo sea et
temen ey
Goal Search Hypoth
Proof Control earch Hypotheses a—a——

o=

AMEUR. N-SINGH [[IRIT /INFT ‘November 2019 Azl faea

The Rodin Platform. Interface (GUI) of the Rodin Prover
View of the Proof Control

ety iy Next Pending
pl'Wﬂ'lM LPP) Lemma PrqulqMLl'P‘F] Cache
Metaprover i —_—
o Reduce to clagsic Hypotheses Previgus  Sub-goal

Review Auto-Prover
Prwer / / Lasun Event-8 language ~ Backirack Undischarge PO Next Reviewed
/

/ il Sub-goal
R AN

\. w0 \ AL
}/ o raa ,,u,,\mm,,,.:\\ ""I‘“ 5e\",,ch { Hiod indarmatian

Editing Area

Post- theorem  Hypothese Mext
HurtFask tactles Default Tactic Undischarge PO

{DiziProws Abstract Expr:ssmn Bickbick

with FroB

I

I, NPT

The Rodin Platform. Interface (GUI) of the Rodin Prover

Interface (GUI) for an unsuccessful proof

Proving - AREN_7_ModHiedV rm  Bmym Py . | s g A . v W)

IO — _— ER P T e

T2t oemes e it -o
LR E

hatcs - S Qo

P ———
i ey
e M D

8 e 13 WS
L R R ]
vt

Move_t>_ Mave!acts,

=] e

- oof Brwte_to Rermove Qi 2wWD

brake to Remove/gria/WD

S b g e 0 f T iy — o —
Sea T -B
‘Selectey Hypotheses -
- .

' Gost
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The Rodin Platform. Interface (GUI) of the Rodin Prover.
Search of Hypotheses

VASy “Sea R 'Cac GRu ~ O

r v
‘s owm [mi
¢ Y x[]-
xer \ rr
=

now » Pos{x)=Position(x)

ct speed_ater — Time x N
a YXE-
Xer

=

now » speed(x)=speed_at(x)
ct xemr

na zscZoneSet

ct
ct wa_zsgca_zs
ct ca_zsgla_zs
ct new_posewa_zs
ct poer \ rr — Time x ZoneSet
ct po={i, j,k-i=xaiedom(Position}aj=now
ct sper — Time x N -:é!:

Feemal developmpnt of cgmplex syztemy



The Rodin Platform. Interface (GUI) of the Rodin Prover.
The information perspective on proofs

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The used Types perspective

‘ (© Proof information 52 =n
actz: mr - mr 4 {x} =
- symbols @ Type Env 3 ]
| o Event n M1 |dentifier  Type
m::x:ssm by Controller: Pos PIRSZ)
Hoves_to_Stop_by Cantroller Pos i
m R P{R)
2 1325 wa 25 <2 2S, na zs. hew pn ZoneSet [40]
A or P(R)
grdl: x « ar ca P(RxZ)
gra2: 1a 2s ¢ ZoeSet ca' P(RxZ)
grd3: ca zs ¢ ZoneSet ca_zs P(Z)
grdd: wa 25 ¢ ZaneSet P P(R)
griEd; na 2 K

aneSet ia P(Rxl)
grdé: By yarirr a yen a Pos(y) & (va 25 v Ca 25)

ia* P{Rx2}
grd7: wa_zs g ca 25 N
ordé: ca zs £ 1a 25 1a_zs P(z)
9rd9: new pos & wa s ir P(R)
™ mr P(R)
actl: sro= sr v {x} mr* P(R)
act2: ar 5 wr \ {x} na P(RxZ)
acti: 1a = 2a = {1m]ij€1a 25 & 1ea} na* P(RxZ)
actd: ca = ca = {2m)|}€ca 25 A 1=k} hal 25 P(Z)

act5: wa = wa = {1~)))ewa 75 & 1ax} new_pas 4

acth: na = na = {1)))402 25 o 1=a}

r P(R)
act?: Pos(x) = new pos P(R}
- re ..(...
AT 1 in M1 — =
w Indaribet in —a—— e
TIAe wer s owod v moraria) - WAl & FAN(ed = 1 =

AT ANMEUR N SINGH [IRIT INFT-ENSEEIMT Y AIT-AMELIR. N SINGH () T/ TNPT-ENSEEIHT Formal development of compjes yystems.
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The Rodin Platform. Interface (GUI) of the Rodin Prover.
The used inference rules perspective

The Rodin Platform. Interface (GUI) of the Rodin Prover.
The preference perspective for tactics (Auto/Post)

Auto/Post Tactic -
» General -
IS - Envi - = m . g Cistomise Event-B Tactics
Symbaols Type Enviranment @ Rule Details &2 E‘:i:;daelling u o SR AR
Aule: PP Proving Ul Profiles
¥ Sequent Prover
Input Sequent: Auto/Post Tactic Auto-Tactics

—xBerr Meta Prover

xemr » Help ~ Enable auto-tactic for proving

Vx-xera-xerr=ran({x} < wa)cran({x} < ca) > Instali/Update Tactie profile t be used for auto-tactics  Default Auto Tactic Profile 5

ca zsgZoneSet * Isabelle for Rodin ’

ca zscia 25 > ProB ]

wa zsgca zs > Run/Debug P - X

new_posewa_zs :::T“ ¥ Enahie post-tactic for proving

Jy-yer \ rra-y=xAaPos(y)ewa_zsuca_zs Tactic profile to be used for posi-tactics  Default Post Tactic Profile s

ia zscZoneSet

na zsgZoneSet

xBer

wa_zseZoneSet

 ran({x8} < (wa<{i,j jewa_zsai=x | i » j}))cran({{xB} < (ca<{i,j:jeca_zsai=x | i » j})
2 Cancel oK

Fuormal desviopiment of comples systam
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Plan Animation of Event-B models. Use of model checking

@ The Rodin platform is equipped with a model checker offering the capability
to

» animate Event-B models at all refinement levels
» model check properties expressed in temporal logic

Benefits
o Exhaustive verification if the models are finite

@ Assistance to the design of Event-B models by identifying counter-examples

L == = (=== oo

. . L A= |

© Animation of Event-B models = S
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Animation of Event-B models. Use of model checking Animation of Event-B models. Use of model checking.
What is ProB 7

A useful tool for analysing and debugging Event-B models

== It is required to bound models (if they are not) to use ProB

A list of States

Events
wew - e ey et —
o= rrT sy (TR o

The ProB model-checker e l 2

=S i—
A= 1 =
AIT-AMEUR. N SINGH (IRFT INPT-ERSEEINT MNovember 2006 151/143 N AT AMEUR I SINGH [IRIT INPT-ENSEEIHT Fermal developmant of compfax wystems — November 2010




Animation of Event-B models. Model checking with ProB ? Animation of Event-B models. Model checking with ProB 7
Verification of Invariants

@ Enable Events

Rodin Platform > Preference > ProB

-
s e @ Check Invariants
Syl
*Hel WAL, il 0 il 0 o 5 AMT LT I ' 4 by ) 2
U % :
Isabelia for Rodir r, =y
e of irmpacifia] deferra maty in £ETS section
P8 s roms T S A rx e w
»RunfDebug o b o Cneg e g L Everts B 0 —swm =8 —rum3n s
st F e P
Taam e » = andana - 7 = . -
J - = L R - . o e . 2 1 it g
o e o = N AN 1 3
a - Quemamuove d @ wnvaao AT
5o e s
Euttie C3E 1Deme Sl reaen Errureine ©5wp o Remove by, Comole -
Aoy THL 17 svmbenct! g peaetuanes - g:w ,;',,-,.:,
- AN @ Canfi= = Srop @ ®uAzy
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oo CRE S50, e, ot
e St Toiore
@
Syawrmtry Made: oftflood canonneuty.nesh att
Tome st i 2500 ver 8 Exoir D =8
na
o
i =y AP 2
o - gt
Niie S iz
e wsstes
& “ac
-@c
‘Tranglute onty cormriats P to KOOKDD -1
R
-oca
e e e o b -1
r@ce
ezt Ol el r@cr
- a
a—_—u—— —a=—
U=l TR
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Animation of Event-B models. Model checking with ProB? Animation of Event-B models. Model checking with ProB.
Guards Checking Deadlocks Freeness

@ Deadlock Freedom
Checks > Model Checking

@ Guards Checking

- g B e b e L R - LS e
—Ewn T =o Suare 2 S D = hamy B =R
- Yoo - amm -
Cmm @ 2 " e b T e
P St lo_Move w - INITIALISATION (R1.A2} .
E;-mn.mm " ’ lunnased . (R?A2) Breadth First Search Symmetry Reduction
S:00__Remove_oy_Conlrode: Form._ o
Svoras i 5oy Comee s v Find Deadlocks s No Symmetry Reduction
© Moves_to_Braxe P nvanat
ity [l v Find Invariant Violations Nauty
S5 e camase atara. oo . . . .
OrumTatiors = sart o wove & Find Theorem Violations Permutation Flooding
T w Recheck Existing States Symmetry Marker (Hash)
" " wn
L b Bt O . : Mo s it Stop when all Events are Covered
. v BT ~ i
My - .
-
jororaiy: S o . - Start Model Checking
- ARPNY_Mod wd :‘“7 IJ:::W co 3 L4
-dce Conic 1o Smp
r9c Confict_to_brake
r9cz Stow_To_Marve By G
*@c raka,To_pdove
18 oot =
r@cs
r@c

=-a=— ==
EE= TS L
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Animation of Event-B models. Model checking with ProB.
LTL in ProB

Checks > LTL Model Checking

Formula:
ad Open...

Starting Point:

Start in the {possible several} initialisation states of the model <
Symmetry Reduction:

No Symmetry Reduction )

Start LTL Checking Cancel
== o

¥ AFFAMEUR! N SINGH [IRIT/ INPT-ENSEEIHT

Animation of Event-B models. Model checking with ProB.
LTL in ProB

The following formulas can be verified.

G{ Temperature >= 7& Temperature <= 35} No Counterexample
G{ Temperature < 35} Counterexample

@
G {Temperature > 7 }  Counterexample
X {Temperature < 7 }  Counterexample
=

AMELIR] N SINGH [IRIT INPT-ENSEET | [

Forml deeslofment of camplex systei.

¥ AIT-AMEUR. N. SINGH [IRIT | [NPT-ENSEEFT Formal development of comples systenm.

Animation of Event-B models. Model checking with ProB.
LTL in ProB

The following formula can be verified.
G{cr =2}

State LTL Counter-Example 3
Gler={}] 2
G

Adding_Rover — Adding_Rover — Start_to_Move — Start_to_Move —
Move_to_Stop_by_ Controller — Stop_to_Remove_by_Controller —
Move_to_Stop_by_ Controller — Random_ Conflict

==t 1

I\
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The RODIN paltform

@ It is an IDE (Integrated Development Environment) for the development of
Event-B models

@ Developed on top of Eclipse

e Many associated tools

» Model editors, refinement

» Proofs, model animation

» Validation of models using model checking (ProB)

» Code generation

Many Pluglns (UML, BPEL2B, THEORY, Prouveurs, etc.)

@ Available on http://www.event-b.org
Used for TP at ENSEEIHT
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Plan
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Conclusion

@ Event-B is a system modelling method which uses refinement and proof
@ Incremental development approach
@ Many developments in areas like
» transport,
electronic cards,
cyber-physical systems,
embedded systems, pacemaker, insulin pump,
information systems, web services composition, voting machines,
mathematical engineering, proof and demonstration of theorems,
etc.

Yy vy vyYVvYVvyYyYy

@ System modelling and high abstract level reasoning

@ Simple mathematical foundations

@ Availability of a tool with many plug-ins
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