

Contents

Starting from Scratch 7

Start with a feature, not a layout. 8

Detail comes later . 12

Don’t design too much . 16

Choose a personality . 20

Limit your choices . 28

Hierarchy is Everything 35

Not all elements are equal. 36

Size isn’t everything. 38

Don’t use grey text on colored backgrounds . 42

Emphasize by de-emphasizing . 46

Labels are a last resort . 48

Separate visual hierarchy from document hierarchy 54

Balance weight and contrast. 56

Semantics are secondary . 60

Layout and Spacing 65

Start with too much white space . 66

Establish a spacing and sizing system . 70

You don’t have to fill the whole screen . 76

Grids are overrated . 84

Relative sizing doesn’t scale . 92

Avoid ambiguous spacing. 96

Designing Text 101

Establish a type scale. 102

Use good fonts . 108

Keep your line length in check . 114

Baseline, not center . 118

Line-height is proportional . 122

Not every link needs a color . 126

Align with readability in mind . 128

Use letter-spacing effectively . 132

Working with Color 137

Ditch hex for HSL . 138

You need more colors than you think. 142

Define your shades up front . 148

Don’t let lightness kill your saturation . 152

Greys don’t have to be grey . 158

Accessible doesn’t have to mean ugly. 162

Don’t rely on color alone . 166

Creating Depth 171

Emulate a light source . 172

Use shadows to convey elevation . 180

Shadows can have two parts . 186

Even flat designs can have depth. 190

Overlap elements to create layers . 194

Working with Images 199

Use good photos . 200

Text needs consistent contrast . 202

Everything has an intended size . 208

Beware user-uploaded content. 214

Finishing Touches 219

Supercharge the defaults . 220

Add color with accent borders . 224

Decorate your backgrounds . 228

Don’t overlook empty states . 234

Use fewer borders . 238

Think outside the box . 242

Leveling Up 249

Starting from Scratch

Start with a feature, not a layout

When you start the design for a new app idea, what do you design first? If it’s
the navigation bar at the top of the page, you’re making a mistake.

The easiest way to find yourself frustrated and stuck when working on a new
design is to start by trying to “design the app.” When most people think
about “designing the app”, they’re thinking about the shell.

Should it have a top nav, or a sidebar?

Should the navigation items be on the left, or on the right?

Should the page content be in a container, or should it be full-width?

Where should the logo go?

The thing is, an “app” is actually a collection of features. Before you’ve
designed a few features, you don’t even have the information you need to
make a decision about how the navigation should work. No wonder it’s
frustrating!

Instead of starting with the shell, start with a piece of actual functionality.

For example, say you’re building a flight booking service. You could start
with a feature like “searching for a flight”.

Your interface will need:

• A field for the departure city

• A field for the destination city

• A field for the departure date

• A field for the return date

• A button to perform the search

Start with that.

9 Start with a feature, not a layout

Hell, you might not even need that other stuff anyways — it worked for
Google.

Start with a feature, not a layout 10

11 Start with a feature, not a layout

Detail comes later

In the earliest stages of designing a new feature, it’s important that you don’t
get hung up making low-level decisions about things like typefaces,
shadows, icons, etc.

That stuff will all matter eventually, but it doesn’t matter right now.

If you have trouble ignoring the details when working in a high fidelity
environment like the browser or your favorite design tool, one trick Jason
Fried of Basecamp likes to use is to design on paper using a thick Sharpie.

Obsessing over little details just isn’t possible with a Sharpie, so it can be a
great way to quickly explore a bunch of different layout ideas.

Hold the color

Even when you’re ready to refine an idea in higher fidelity, resist the
temptation to introduce color right away.

By designing in grayscale, you’re forced to use spacing, contrast, and size to
do all of the heavy lifting.

It’s a little more challenging, but you’ll end up with a clearer interface with a
strong hierarchy that’s easy to enhance with color later.

13 Detail comes later

Don’t over-invest

The whole point of designing in low-fidelity is to be able to move fast, so you
can start building the real thing as soon as possible.

Sketches and wireframes are disposable — users can’t do anything with
static mockups. Use them to explore your ideas, and leave them behind
when you’ve made a decision.

Detail comes later 14

15 Detail comes later

Don’t design too much

You don’t need to design every single feature in an app before you move on
to implementation; in fact, it’s better if you don’t.

Figuring out how every feature in a product should interact and how every
edge case should look is really hard, especially in the abstract.

How should this screen look if the user has 2000 contacts?

Where should the error message go in this form?

How should this calendar look when there are two events scheduled at the
same time?

You’re setting yourself up for frustration by trying to figure this stuff out
using only a design tool and your imagination.

Work in cycles

Instead of designing everything up front, work in short cycles. Start by
designing a simple version of the next feature you want to build.

Once you’re happy with the basic design, make it real.

You’ll probably run into some unexpected complexity along the way, but
that’s the point — it’s a lot easier to fix design problems in an interface you
can actually use than it is to imagine every edge case in advance.

Iterate on the working design until there are no more problems left to solve,

17 Don’t design too much

then jump back into design mode and start working on the next feature.

Don’t get overwhelmed working in the abstract. Build the real thing as early
as possible so your imagination doesn’t have to do all the heavy lifting.

Be a pessimist

Don’t imply functionality in your designs that you aren’t ready to build.

For example, say you’re working on a comment system for a project
management tool. You know that one day, you’d like users to be able to
attach files to their comments, so you include an attachments section in
your design.

Don’t design too much 18

You get deep into implementation only to discover that supporting
attachments is going to be a lot more work than you anticipated. There’s no
way you have time to finish it right now, so the whole commenting system
sits on the backburner while you take care of other priorities.

The thing is, a comment system with no attachments would still have been
better than no comment system at all, but because you planned to include it
from day one you’ve got nothing you can ship.

When you’re designing a new feature, expect it to be hard to build.
Designing the smallest useful version you can ship reduces that risk
considerably.

If part of a feature is a “nice-to-have”, design it later. Build the simple version
first and you’ll always have something to fall back on.

19 Don’t design too much

Choose a personality

Every design has some sort of personality. A banking site might try to
communicate secure and professional, while a trendy new startup might
have a design that feels fun and playful.

On the surface, giving a design a particular personality might sound abstract
and handwavy, but a lot of it is determined by a few solid, concrete factors.

Font choice

Typography plays a huge part in determining how a design feels.

If you want an elegant or classic look, you might want to incorporate a serif
typeface in your design:

For a playful look, you could use a rounded sans serif:

21 Choose a personality

If you’re going for a plainer look, or want to rely on other elements to provide
the personality, a neutral sans serif works great:

Color

There’s a lot of science out there on the psychology of color, but in practice,
you really just need to pay attention to how different colors feel to you.

Blue is safe and familiar — nobody ever complains about blue:

Choose a personality 22

Gold might say “expensive” and “sophisticated”:

Pink is a bit more fun, and not so serious:

While trying to choose colors using only psychology isn’t super practical — a
lot of it is just about what looks good to you — it can be helpful to think
about when you’re trying to understand why you think a color is the right fit.

23 Choose a personality

Border radius

As small of a detail as it sounds, if and how much you round the corners in
your design can have a big impact on the overall feel.

A small border radius is pretty neutral, and doesn’t really communicate
much of a personality on its own:

A large border radius starts to feel more playful:

Choose a personality 24

…while no border radius at all feels a lot more serious or formal:

Whatever you choose, it’s important to stay consistent. Mixing square
corners with rounded corners in the same interface almost always looks
worse than sticking with one or the other.

Language

While not a visual design technique per se, the words you use in an interface
have a massive influence on the overall personality.

Using a less personal tone might feel more official or professional:

25 Choose a personality

…while using friendlier, more casual language makes a site feel, well,
friendlier:

Words are everywhere in a user interface, and choosing the right ones is just
as (if not more) important than choosing the right color or typeface.

Deciding what you actually want

A lot of the time you’ll probably just have a gut feeling for the personality
you’re going for. But if you don’t, a great way to simplify the decision is to
take a look at other sites used by the people who want to reach.

If they are mostly pretty “serious business”, maybe that’s how your site
should look too. If they are more playful with a bit of humor, maybe that’s a
better direction to take.

Just try not to borrow too much from direct competitors, you don’t want to
look like a second-rate version of something else.

Choose a personality 26

27 Choose a personality

Limit your choices

Having millions of colors and thousands of fonts to choose from might
sound nice in theory, but in practice it’s usually a paralyzing curse.

And it’s not just fonts and colors, either — you can easily waste time
agonizing over almost any minor design decision.

Should this text be 12px or 13px?

Should this box shadow have a 10% opacity or a 15% opacity?

Should this avatar be 24px or 25px tall?

Should I use a medium font weight for this button or semibold?

Should this headline have a bottom margin of 18px or 20px?

When you’re designing without constraints, decision-making is torture
because there’s always going to be more than one right choice.

For example, these buttons all have different background colors, but it’s
almost impossible to tell the difference between them by just looking at
them.

How are you supposed to make a confident decision if none of these would
really be bad choices?

Define systems in advance

Instead of hand-picking values from a limitless pool any time you need to
make a decision, start with a smaller set of options.

Don’t reach for the color picker every time you need to pick a new shade of
blue — choose from a set of 8-10 shades picked out ahead of time.

Similarly, don’t tweak a font size one pixel at a time until it looks perfect.
Define a restrictive type scale in advance and use that to make any future
font size decisions.

29 Limit your choices

When you build systems like this, you only have to do the hard work of
picking the initial values once instead of every time you’re designing a new
piece of UI. It’s a bit more work up front, but it’s worth it — it’ll save you a ton
of decision fatigue down the road.

Designing by process of elimination

When you’re designing using a constrained set of values, decision-making is
a lot easier because there are a lot fewer “right” choices.

For example, say you’re trying to choose a size for an icon. You’ve defined a
sizing scale in advance where your only small-to-medium sized options are
12px, 16px, 24px, and 32px.

To pick the best option, start by taking a guess at which one will look best,
maybe 16px. Then try the values on either side (12px and 24px) for
comparison.

Chances are, two of those options will seem like obviously bad choices. If it’s
the options on the outside, you’re done — the middle option is the only good
choice.

Limit your choices 30

If one of the outer options looks best, do another comparison using that
option as the “middle” value and make sure there’s not a better choice.

This approach works for anything where you’ve defined a system. When
you’re limited to a set of options that all look noticeably different, picking the
best one is a piece of cake.

Systematize everything

The more systems you have in place, the faster you’ll be able to work and the
less you’ll second guess your own decisions.

You’ll want systems for things like:

• Font size

• Font weight

• Line height

• Color

• Margin

• Padding

• Width

• Height

• Box shadows

31 Limit your choices

• Border radius

• Border width

• Opacity

…and anything else you run into where it feels like you’re laboring over a low-
level design decision.

You don’t have to define all of this stuff ahead of time, just make sure you’re
approaching design with a system-focused mindset. Look for opportunities
to introduce new systems as you make new decisions, and try to avoid
having to make the same minor decision twice.

Designing with systems is going to be a recurring theme throughout this
book, and in later chapters we’ll talk about building a lot of these systems in
finer detail.

Limit your choices 32

Hierarchy is Everything

Not all elements are equal

When you think of visual design as “styling things so they look good”, it’s
easy to see why it might feel hard to achieve without innate artistic talent.
But it turns out that one of the biggest factors in making something “look
good” has nothing to do with superficial styling at all.

Visual hierarchy refers to how important the elements in an interface appear
in relation to one another, and it’s the most effective tool you have for
making something feel “designed”.

When everything in an interface is competing for attention, it feels noisy and
chaotic, like one big wall of content where it’s not clear what actually
matters:

When you deliberately de-emphasize secondary and tertiary information,
and make an effort to highlight the elements that are most important, the
result is immediately more pleasing, even though the color scheme, font
choice, and layout haven’t changed:

So how do you actually make this happen? In the following chapters, we’ll
cover a number of specific strategies you can use to introduce hierarchy into
your designs.

37 Not all elements are equal

Size isn’t everything

Relying too much on font size to control your hierarchy is a mistake — it
often leads to primary content that’s too large, and secondary content that’s
too small.

Instead of leaving all of the heavy lifting to font size alone, try using font
weight or color to do the same job.

For example, making a primary element bolder lets you use a more

reasonable font size, and often does a better job at communicating its
importance anyways:

Similarly, using a softer color for supporting text instead of a tiny font size
makes it clear that the text is secondary while sacrificing less on readability:

39 Size isn’t everything

Try and stick to two or three colors:

• A dark color for primary content (like the headline of an article)

• A grey for secondary content (like the date an article was published)

• A lighter grey for tertiary content (maybe the copyright notice in a
footer)

Similarly, two font weights are usually enough for UI work:

• A normal font weight (400 or 500 depending on the font) for most text

• A heavier font weight (600 or 700) for text you want to emphasize

Stay away from font weights under 400 for UI work — they can work for
large headings but are too hard to read at smaller sizes. If you’re considering

Size isn’t everything 40

using a lighter weight to de-emphasize some text, use a lighter color or
smaller font size instead.

41 Size isn’t everything

Don’t use grey text on colored
backgrounds

Making text a lighter grey is a great way to de-emphasize it on white
backgrounds, but it doesn’t look so great on colored backgrounds.

That’s because the effect we’re actually seeing with grey on white is reduced
contrast.

Making the text closer to the background color is what actually helps create
hierarchy, not making it light grey.

You might think that the easiest way to achieve this is to use white text and
reduce the opacity:

While this does reduce the contrast, it often results in text that looks dull,
washed out, and sometimes even disabled.

43 Don’t use grey text on colored backgrounds

Even worse, using this approach on top of an image or pattern means the
background will show through the text:

A better approach is to hand-pick a new color, based on the background
color.

Choose a color with the same hue, and adjust the saturation and lightness
until it looks right to you:

Hand-picking a color this way makes it easy to reduce the contrast without
the text looking faded.

Don’t use grey text on colored backgrounds 44

45 Don’t use grey text on colored backgrounds

Emphasize by de-emphasizing

Sometimes you’ll run into a situation where the main element of an interface
isn’t standing out enough, but there’s nothing you can add to it to give it the
emphasis it needs.

For example, despite trying to make this active nav item “pop” by giving it a
different color, it still doesn’t really stand out compared to the inactive items:

When you run into situations like this, instead of trying to further emphasize
the element you want to draw attention to, figure out how you can de-
emphasize the elements that are competing with it.

In this example, you could do that by giving the inactive items a softer color
so they sit more in the background:

You can apply this thinking to bigger pieces of an interface as well. For

example, if a sidebar feels like it’s competing with your main content area,
don’t give it a background color — let the content sit directly on the page
background instead:

47 Emphasize by de-emphasizing

Labels are a last resort

Put down the accessibility pitchfork — this isn’t about forms.

When presenting data to the user (especially data from the database), it’s
easy to fall into the trap of displaying it using a naive label: value format.

The problem with this approach is that it makes it difficult to present the
data with any sort of hierarchy; every piece of data is given equal emphasis.

You might not need a label at all

In a lot of situations, you can tell what a piece of data is just by looking at the
format.

For example, janedoe@example.com is an email address, (555) 765-4321 is a
phone number and $19.99 is a price.

When the format isn’t enough, the context often is. When you see the phrase
“Customer Support” listed below someone’s name in an employee directory,

you don’t need a label to make the connection that that is the department
the person works in.

When you’re able to present data without labels, it’s much easier to
emphasize important or identifying information, making the interface easier
to use while at the same time making it feel more “designed”.

Combine labels and values

Even when a piece of data isn’t completely clear without a label, you can
often avoid adding a label by adding clarifying text to the value.

For example, if you need to display inventory in an e-commerce interface,
instead of “In stock: 12”, try something like “12 left in stock”.

49 Labels are a last resort

If you’re building a real estate app, something like “Bedrooms: 3” could
simply become “3 bedrooms”.

When you’re able to combine labels and values into a single unit, it’s much
easier to give each piece of data meaningful styling without sacrificing on
clarity.

Labels are secondary

Sometimes you really do need a label; for example when you’re displaying
multiple pieces of similar data and they need to be easily scannable, like on
a dashboard.

Labels are a last resort 50

In these situations, add the label, but treat it as supporting content. The data
itself is what matters, the label is just there for clarity.

De-emphasize the label by making it smaller, reducing the contrast, using a
lighter font weight, or some combination of all three.

When to emphasize a label

If you’re designing an interface where you know the user will be looking for
the label, it might make sense to the emphasize the label instead of the data.

This is often the case on information-dense pages, like the technical
specifications of a product.

If a user is trying to find out the dimensions of a smartphone, they’re
probably scanning the page for words like “depth”, not “7.6mm”.

51 Labels are a last resort

Don’t de-emphasize the data too much in these scenarios; it’s still important
information. Simply using a darker color for the label and a slightly lighter
color for the value is often enough.

Labels are a last resort 52

53 Labels are a last resort

Separate visual hierarchy from
document hierarchy

It’s important to use semantic markup when building for the web, which
means you’ll often be using heading tags like h1, h2, or h3 if you decide to add
a title to part of an interface.

By default, web browsers assign progressively smaller font sizes to heading
elements, so an h1 is pretty large, and an h6 is pretty small. This can be
helpful for document-style content like articles or documentation, but it can
encourage some bad decisions in application UIs.

Using an h1 tag to add a title like Manage Account to a page makes perfect
sense semantically, but because we’re trained to believe that h1 elements
should be big, it’s easy to fall into the trap of making those titles bigger than
they really need to be.

A lot of the time, section titles act more like labels than headings — they are
supportive content, they shouldn’t be stealing all the attention.

Usually the content in that section should be the focus, not the title. That
means that a lot of the time, titles should actually be pretty small:

Taken to the extreme, you might even include section titles in your markup
for accessibility reasons but completely hide them visually because the
content speaks for itself.

Don’t let the element you’re using influence how you choose to style it —
pick elements for semantic purposes and style them however you need to
create the best visual hierarchy.

55 Separate visual hierarchy from document hierarchy

Balance weight and contrast

The reason bold text feels emphasized compared to regular text is that bold
text covers more surface area — in the same amount of space, more pixels
are used for text than for the background.

So why is this interesting? Well it turns out that the relationship between
surface area and hierarchy has implications on other elements in a UI as well.

Using contrast to compensate for weight

One of the places understanding this relationship becomes important is
when working with icons.

Just like bold text, icons (especially solid ones) are generally pretty “heavy”
and cover a lot of surface area. As a result, when you put an icon next to
some text, the icon tends to feel emphasized.

Unlike text, there’s no way to change the “weight” of an icon, so to create
balance it needs to be de-emphasized in some other way.

A simple and effective way to do this is to lower the contrast of the icon by
giving it a softer color.

57 Balance weight and contrast

This works anywhere you need to balance elements that have different
weights. Reducing the contrast works like a counterbalance, making heavier
elements feel lighter even though the weight hasn’t changed.

Using weight to compensate for contrast

Just like how reducing contrast helps to de-emphasize heavy elements,
increasing weight is a great way to add a bit of emphasis to low contrast
elements.

This is useful when things like thin 1px borders are too subtle using a soft
color, but darkening the color makes the design feel harsh and noisy.

Balance weight and contrast 58

Making the border a bit heavier by increasing the width helps to emphasize
it without losing the softer look:

59 Balance weight and contrast

Semantics are secondary

When there are multiple actions a user can take on a page, it’s easy to fall
into the trap of designing those actions based purely on semantics.

Semantics are an important part of button design, but that doesn’t mean you
can forget about hierarchy.

Every action on a page sits somewhere in a pyramid of importance. Most
pages only have one true primary action, a couple of less important
secondary actions, and a few seldom used tertiary actions.

When designing these actions, it’s important to communicate their place in
the hierarchy.

• Primary actions should be obvious. Solid, high contrast background
colors work great here.

• Secondary actions should be clear but not prominent. Outline styles or
lower contrast background colors are great options.

• Tertiary actions should be discoverable but unobtrusive. Styling these
actions like links is usually the best approach.

When you take a hierarchy-first approach to designing the actions on page,
the result is a much less busy UI that communicates more clearly:

61 Semantics are secondary

Destructive actions

Being destructive or high severity doesn’t automatically mean a button
should be big, red, and bold.

If a destructive action isn’t the primary action on the page, it might be better
to give it a secondary or tertiary button treatment.

Combine this with a confirmation step where the destructive action actually
is the primary action, and apply the big, red, bold styling there.

Semantics are secondary 62

Layout and Spacing

Start with too much white space

One of the easiest ways to clean up a design is to simply give every element
a little more room to breathe.

Sounds simple enough, right? So how come we don’t usually do it?

White space should be removed, not added

When designing for the web, white space is almost always added to a design
— if something looks little too cramped, you add a bit of margin or padding
until things look better.

The problem with this approach is that elements are only given the minimum
amount of breathing room necessary to not look actively bad. To make
something actually look great, you usually need more white space.

67 Start with too much white space

A better approach is to start by giving something way too much space, then
remove it until it you’re happy with the result.

Start with too much white space 68

You might think you’d end up with too much white space this way, but in
practice, what might seem like “a little too much” when focused on an
individual element ends up being closer to “just enough” in the context of a
complete UI.

Dense UIs have their place

While interfaces with a lot of breathing room almost always feel cleaner and
simpler, there are certainly situations where it makes sense for a design to be
much more compact.

For example, if you’re designing some sort of dashboard where a lot of
information needs to be visible at once, packing that information together so
it all fits on one screen might be worth making the design feel more busy.

The important thing is to make this a deliberate decision instead of just
being the default. It’s a lot more obvious when you need to remove white
space than it is when you need to add it.

69 Start with too much white space

Establish a spacing and sizing
system

You shouldn’t be nitpicking between 120px and 125px when trying to decide
on the perfect size for an element in your UI.

Painfully trialing arbitrary values one pixel at a time will drastically slow you
down at best, and create ugly, inconsistent designs at worst.

Instead, limit yourself to a constrained set of values, defined in advance.

A linear scale won’t work

Creating a spacing and sizing system isn’t quite as simple as something like
“make sure everything is a multiple of 4px” — a naive approach like that
doesn’t make it any easier to choose between 120px and 125px.

For a system to be truly useful, it needs to take into consideration the relative
difference between adjacent values.

At the small end of the scale (like the size of an icon, or the padding inside a
button), a couple of pixels can make a big difference. Jumping from 12px to
16px is an increase of 33%!

But at the large end (the width of a card, or the vertical spacing in a landing
page hero), a couple of pixels is basically imperceivable. Even increasing the
width of a card from 500px to 520px is only a difference of 4%, which is
eight times less significant than the jump from 12px to 16px.

71 Establish a spacing and sizing system

If you want your system to make sizing decisions easy, make sure no two
values in your scale are ever closer than about 25%.

Defining the system

Just like you don’t want to toil over arbitrary values when sizing an element
or fine-tuning the space between elements, you don’t want to build your
spacing and sizing scale from arbitrary values either.

A simple approach is to start with a sensible base value, then build a scale
using factors and multiples of that value.

16px is a great number to start with because it divides nicely, and also
happens to be the default font size in every major web browser.

Establish a spacing and sizing system 72

The values at the small end of the scale should start pretty packed together,
and get progressively more spaced apart as you get further up the scale.

Here’s an example of a fairly practical scale built using this approach:

Using the system

Once you’ve defined your spacing and sizing system, you’ll find that you’re
able to design a hell of a lot faster, especially if you design in the browser
(sticking to a system is easier when you’re typing in numbers than when
you’re dragging with the mouse.)

73 Establish a spacing and sizing system

Need to add some space under an element? Grab a value from your scale
and try it out. Not quite enough? The next value is probably perfect.

While the workflow improvements are probably the biggest benefit, you’ll
also start to notice a subtle consistency in your designs that wasn’t there
before, and things will look just a little bit cleaner.

A spacing and sizing system will help you create better designs, with less
effort, in less time. Design advice doesn’t get much more valuable than that.

Establish a spacing and sizing system 74

75 Establish a spacing and sizing system

You don’t have to fill the whole
screen

Remember when 960px was the de facto layout width for desktop-size
designs? These days you’d be hard-pressed to find a phone with a resolution
that low.

So it’s no surprise that when most of us open our design tool of choice on
our high resolution displays, we give ourselves at least 1200-1400px of space
to fill. But just because you have the space, doesn’t mean you need to use it.

If you only need 600px, use 600px. Spreading things out or making things
unnecessarily wide just makes an interface harder to interpret, while a little
extra space around the edges never hurt anyone.

This is just as applicable to individual sections of an interface, too. You don’t
need to make everything full-width just because something else (like your
navigation) is full-width.

77 You don’t have to fill the whole screen

Give each element just the space it needs — don’t make something worse
just to make it match something else.

Shrink the canvas

If you’re having a hard time designing a small interface on a large canvas,
shrink the canvas! A lot of the time it’s easier to design something small
when the constraints are real.

If you’re building a responsive web application, try starting with a ~400px
canvas and designing the mobile layout first.

You don’t have to fill the whole screen 78

Once you have a mobile design you’re happy with, bring it over to a larger
size screen and adjust anything that felt like a compromise on smaller
screens. Odds are you won’t have to change as much as you think.

Thinking in columns

If you’re designing something that works best at a narrower width but feels
unbalanced in the context of an otherwise wide UI, see if you can split it into
columns instead of just making it wider.

79 You don’t have to fill the whole screen

For example, take this narrow form layout:

You don’t have to fill the whole screen 80

If you wanted to make better use of the available space without making the
form harder to use, you could break the supporting text out into a separate
column:

This makes the design feel more balanced and consistent without
compromising on the optimal width for the form itself.

81 You don’t have to fill the whole screen

Don’t force it

Just like you shouldn’t worry about filling the whole screen, you shouldn’t try
to cram everything into a small area unnecessarily either.

If you need a lot of space, go for it! Just don’t feel obligated to fill it if you
don’t have to.

You don’t have to fill the whole screen 82

83 You don’t have to fill the whole screen

Grids are overrated

Using a system like a 12-column grid is a great way to simplify layout
decisions, and can bring a satisfying sense of order to your designs.

But even though grids can be useful, outsourcing all of your layout decisions
to a grid can do more harm than good.

Not all elements should be fluid

Fundamentally, a grid system is just about giving elements fluid, percentage-
based widths, where you’re choosing from a constrained set of percentages.

For example, in a 12-column grid each column is 8.33% wide. As long as an

element’s width is some multiple of 8.33% (including any gutters), that
element is “on the grid”.

The problem with treating grid systems like a religion is that there are a lot of
situations where it makes much more sense for an element to have a fixed
width instead of a relative width.

For example, consider a traditional sidebar layout. Using a 12-column grid
system, you might give the sidebar a width of three columns (25%) and the
main content area a width of nine columns (75%).

85 Grids are overrated

This might seem fine at first, but think about what happens when you resize
the screen.

If you make the screen wider the sidebar gets wider too, taking up space
that could’ve been put to better use by the main content area.

Similarly, if you make the screen narrower, the sidebar can shrink below its
minimum reasonable width, causing awkward text wrapping or truncation.

In this situation, it makes much more sense to give the sidebar a fixed width
that’s optimized for its contents. The main content area can then flex to fill
the remaining space, using its own internal grid to lay out its children.

Grids are overrated 86

This applies within components, too — don’t use percentages to size
something unless you actually want it to scale.

87 Grids are overrated

Don’t shrink an element until you need to

Say you’re designing a login card. Using the full screen width would look
ugly, so you give it a width of 6 columns (50%) with a 3-column offset on
each side.

On medium-sized screens you realize the card is a little narrow even though
you have the space to make it bigger, so at that screen size you switch it to a
width of 8 columns, with two empty columns on each side.

Grids are overrated 88

The silly thing about this approach is that because column widths are fluid,
there’s a range in screen sizes where the login card is wider on medium
screens than it is on large screens:

If you know that say 500px is the optimal size for the card, why should it
ever get smaller than that if you have the space for it?

Instead of sizing elements like this based on a grid, give them a max-width
so they don’t get too large, and only force them to shrink when the screen
gets smaller than that max-width.

89 Grids are overrated

Don’t be a slave to the grid — give your components the space they need
and don’t make any compromises until it’s actually necessary.

Grids are overrated 90

91 Grids are overrated

Relative sizing doesn’t scale

It’s tempting to believe that every part of an interface should be sized
relative to one another, and that if element A needs to shrink by 25% on
smaller screens, that element B should shrink by 25%, too.

For example, say you’re designing an article at a large screen size. If your
body copy is 18px and your headlines are 45px, it’s tempting to encode that
relationship by defining your headline size as 2.5em; 2.5 times the current
font size.

There’s nothing inherently wrong with using relative units like em, but don’t
be fooled into believing that relationships defined this way can remain static
— 2.5em might be the perfect headline size on desktop but there’s no
guarantee that it’ll be the right size on smaller screens.

Say you reduce the size of your body copy to 14px on small screens to keep
the line length in check. Keeping your headlines at 2.5em means a rendered
font size of 35px — way too big for a small screen!

A better headline size for small screens might be somewhere between 20px
and 24px:

93 Relative sizing doesn’t scale

That’s only 1.5-1.7x the size of the 14px body copy — a totally different
relationship than what made sense on desktop screens. That means there
isn’t any real relationship at all, and that there’s no real benefit in trying to
define the headline size relative to the body copy size.

As a general rule, elements that are large on large screens need to shrink
faster than elements that are already fairly small — the difference between
small elements and large elements should be less extreme at small screen
sizes.

Relationships within elements

The idea that things should scale independently doesn’t just apply to sizing
elements at different screen sizes; it applies to the properties of a single
component, too.

Say you’ve designed a button. It’s got a 16px font size, 16px of horizontal
padding, and 12px of vertical padding:

Much like the previous example, it’s tempting to think that the padding
should be defined in terms of the current font size. That way if you want a
larger or smaller button, you only need to change the font size and the
padding will update automatically, right?

Relative sizing doesn’t scale 94

This works — the buttons do scale up or down and preserve the same
proportions. But is that what we really want?

Compare that to these buttons, where the padding gets more generous at
larger sizes and disproportionately tighter at smaller sizes:

Here the large button actually feels like a larger button, and the small
buttons actually feel like smaller buttons, not like we simply adjusted the
zoom.

Let go of the idea that everything needs to scale proportionately — giving
yourself the freedom to fine-tune things independently makes it a hell of a
lot easier to design for multiple contexts.

95 Relative sizing doesn’t scale

Avoid ambiguous spacing

When groups of elements are explicitly separated — usually by a border or
background color — it’s obvious which elements belong to which group.

But when there isn’t a visible separator, it’s not always so obvious.

Say you’re designing a form with stacked labels and inputs. If the margin
below the label is the same as the margin below the input, the elements in
the form group won’t feel obviously “connected”.

At best the user has to work harder to interpret the UI, and at worst it means
accidentally putting the wrong data in the wrong field.

The fix is to increase the space between each form group so it’s clear which
label belongs to which input:

97 Avoid ambiguous spacing

This same problem shows up in article design when there’s not enough
space above section headings:

…and in bulleted lists, when the space between bullets matches the line-
height of a single bullet:

Avoid ambiguous spacing 98

It’s not just vertical spacing that you have to worry about either; it’s easy to
make this mistake with components that are laid out horizontally, too:

Whenever you’re relying on spacing to connect a group of elements, always
make sure there’s more space around the group than there is within it —
interfaces that are hard to understand always look worse.

99 Avoid ambiguous spacing

Designing Text

Establish a type scale

Most interfaces use way too many font sizes. Unless a team has a rigid
design system in place, it’s not uncommon to find that every pixel value from
10px to 24px has been used in the UI somewhere.

Choosing font sizes without a system is a bad idea for two reasons:

1. It leads to annoying inconsistencies in your designs.

2. It slows down your workflow.

So how do you define a type system?

Choosing a scale

Just like with spacing and sizing, a linear scale won’t work. Smaller jumps
between font sizes are useful at the bottom of the scale, but you don’t want
to waste time deciding between 46px and 48px for a large headline.

Modular scales

One approach is to calculate your type scale using a ratio, like 4:5 (a “major
third”), 2:3 (a “perfect fifth”), or perhaps the “golden ratio”, 1:1.618. This is
often called a “modular scale”.

You start with a sensible base value (16px is common since it’s the default
font size for most browsers), apply your ratio to get the next value, then
apply your ratio to that value to get the next value, and so on and so forth:

103 Establish a type scale

The mathematical purity of this approach is alluring, but in practice, it’s not
perfect for a couple of reasons.

1. You end up with fractional values.

Using a 16px base and 4:5 ratio, your scale will end up with lots of sizes
that don’t land right on the pixel, like 31.25px, 39.063px, 48.828px, etc.
Browsers all handle subpixel rounding a little bit differently, so it’s best to
avoid fractional sizes if you can avoid it.

If you do want to use this approach, make sure you round the values
yourself when defining the scale to avoid off-by-one pixel issues across
browsers.

2. You usually need more sizes.

This approach can work well if you’re defining a type scale for long form
content like an article, but for interface design, the jumps you get using
a modular scale are often a bit too limiting.

With a (rounded) 3:4 type scale, you get sizes like 12px, 16px, 21px, and
28px. While this might not seem too limiting on the surface, in practice
you’re going to wish you had a size between 12px and 16px, and another
between 16px and 21px.

You could use a tighter ratio like 8:9, but at this point you’re just trying to
pick a scale that happens to match the sizes you already know you want.

Hand-crafted scales

For interface design, a more practical approach is to simply pick values by
hand. You don’t have to worry about subpixel rounding errors this way, and
you have total control over which sizes exist instead of outsourcing that job
to some mathematical formula.

Establish a type scale 104

Here’s an example of a scale that works well for most projects and aligns
nicely with the spacing and sizing scale recommended in “Establishing a
spacing and sizing system”:

It’s constrained just enough to speed up your decision making, but isn’t so
limited as to make you feel like you’re missing a useful size.

105 Establish a type scale

Avoid em units

When you’re building a type scale, don’t use em units to define your sizes.

Because em units are relative to the current font size, the computed font size
of nested elements is often not actually a value in your scale.

For example, say you’ve defined an em-based type scale like this:

Establish a type scale 106

If you give an element a font size of 1.25em (20px by default), inside of that
element 1em is now equal to 20px. That means that if you give one of the
nested elements a font size of .875em, the actual computed font size is
17.5px, not a value from your type scale!

Stick to px or rem units — it’s the only way to guarantee you’re actually
sticking to the system.

107 Establish a type scale

Use good fonts

With thousands of different typefaces out there to choose from, separating
the good from the bad can be an intimidating task.

Developing an eye for all of the details that make a good typeface can take
years. You probably don’t have years, so here are a few tricks you can use to
start picking out high quality typefaces right away.

Play it safe

For UI design, your safest bet is a fairly neutral sans-serif — think something
like Helvetica.

If you really don’t trust your own taste, one great option is to rely on the
system font stack:

-apple-system, Segoe UI, Roboto, Noto Sans, Ubuntu, Cantarell, Helvetica Neue;

It might not be the most ambitious choice, but at least your users will
already be used to seeing it.

Ignore typefaces with less than five weights

This isn’t always true, but as a general rule, typefaces that come in a lot of
different weights tend to be crafted with more care and attention to detail
than typefaces with fewer weights.

Many font directories (like Google Fonts) will let you filter by “number of
styles”, which is a combination of the available weights as well as the italic
variations of those weights.

A great way to limit the number of options you have to choose from is to
crank that up to 10+ (to account for italics):

109 Use good fonts

On Google Fonts specifically, that cuts out 85% of the available options,
leaving you with less than 50 sans-serifs to choose from.

Optimize for legibility

When someone designs a font family, they are usually designing it for a
specific purpose. Fonts meant for headlines usually have tighter letter-
spacing and shorter lowercase letters (a shorter x-height), while fonts meant
for smaller sizes have wider letter-spacing and taller lowercase letters.

Keep this in mind and avoid using condensed typefaces with short x-heights
for your main UI text.

Trust the wisdom of the crowd

If a font is popular, it’s probably a good font. Most font directories will let you
sort by popularity, so this can be a great way to limit your choices.

This is especially useful when you’re trying to pick out something other than
a neutral UI typeface. Picking a nice serif with some personality for example
can be tough.

Use good fonts 110

Leveraging the collective decision-making power of thousands of other
people can make it a lot easier.

Steal from people who care

Inspect some of your favorite sites and see what typefaces they are using.

111 Use good fonts

There are a lot of great design teams out there full of people with really
strong opinions about typography, and they’ll often choose great fonts that
you might have never found using some of the safer approaches outlined
above.

Developing your intuition

Once you start paying closer attention to the typography on well-designed
sites, it’s not long before you feel pretty comfortable labeling a typeface as
awesome or terrible.

You’re gonna be a type snob soon enough, but the advice outlined above will
help get you by in the meantime.

Use good fonts 112

113 Use good fonts

Keep your line length in check

When styling paragraphs, it’s easy to make the mistake of fitting the text to
your layout instead of trying to create the best reading experience.

Usually this means lines that are too long, making text harder to read.

For the best reading experience, make your paragraphs wide enough to fit
between 45 and 75 characters per line. The easiest way to do this on the
web is using em units, which are relative to the current font size. A width of
20-35em will get you in the right ballpark.

Going a bit wider than 75 characters per line can sometimes work too, but
be aware that you’re entering risky territory — stick to the 45-75 range if you
want to play it safe.

Dealing with wider content

If you’re mixing paragraph text with images or other large components, you
should still limit the paragraph width even if the overall content area needs
to be wider to accommodate the other elements.

115 Keep your line length in check

It might seem counterintuitive at first to use different widths in the same
content area, but the result almost always looks more polished.

Keep your line length in check 116

117 Keep your line length in check

Baseline, not center

There are a lot of situations where it makes sense to use multiple font sizes
to create hierarchy on a single line.

For example, maybe you’re designing a card that has a large title in the top
left and a smaller list of actions in the top right.

When you’re mixing font sizes like this, your instinct might be to vertically
center the text for balance:

When there’s a decent amount of space between the different font sizes it
often won’t look bad enough to catch your attention, but when the text is
close together the awkward alignment becomes more obvious:

A better approach is to align mixed font sizes by their baseline, which is the
imaginary line that letters rest on:

119 Baseline, not center

When you align mixed font sizes by their baseline, you’re taking advantage of
an alignment reference that your eyes already perceive.

The result is a simpler, cleaner look than what you get when you center two
pieces of text and offset their baselines.

Baseline, not center 120

121 Baseline, not center

Line-height is proportional

You might have heard the advice that a line-height of about 1.5 is a good
starting point from a readability perspective.

While that’s not necessarily untrue, choosing the right line-height for your
text is a bit more complicated than just using the same value across the
board in all situations.

Accounting for line length

The reason we add space between lines of text is to make it easy for the
reader to find the next line when the text wraps. Have you ever accidentally
read the same line of text twice, or accidentally skipped a line? The line-
height was probably too short.

When lines of text are spaced too tightly, it’s easy to finish reading a line of
text at the right edge of a page then jump your eyes all the way back to the
left edge only to be unsure which line is next.

This problem is magnified when lines of text are long. The further your eyes
have to jump horizontally to read the next line, the easier it is to lose your
place.

That means that your line-height and paragraph width should be
proportional — narrow content can use a shorter line-height like 1.5, but wide
content might need a line-height as tall as 2.

123 Line-height is proportional

Accounting for font size

Line length isn’t the only factor in choosing the right line-height — font size
has a big impact as well.

When text is small, extra line spacing is important because it makes it a lot
easier for your eyes to find the next line when the text wraps.

But as text gets larger, your eyes don’t need as much help. This means that
for large headline text you might not need any extra line spacing, and a line-
height of 1 is perfectly fine.

Line-height is proportional 124

Line-height and font size are inversely proportional — use a taller line-height
for small text and a shorter line-height for large text.

125 Line-height is proportional

Not every link needs a color

When you’re including a link in a block of otherwise non-link text, it’s
important to make sure that the link stands out and looks clickable.

But when you’re designing an interface where almost everything is a link,
using a treatment designed to make links “pop” in paragraph text can be
really overbearing.

Instead, emphasize most links in a more subtle way, like by just using a
heavier font weight or darker color.

Some links might not even need to be emphasized by default at all. If you’ve
got links in your interface that are really ancillary and not part of the main
path a user takes through the application, consider adding an underline or
changing the color only on hover.

They’ll still be discoverable to any users who think to try, but won’t compete
for attention with more important actions on the page.

127 Not every link needs a color

Align with readability in mind

In general, text should be aligned to match the direction of the language it’s
written in. For English (and most other languages), that means that the vast
majority of text should be left-aligned.

Other alignment options do have their place though, you just need to use
them effectively.

Don’t center long form text

Center-alignment can look great for headlines or short, independent blocks
of text.

But if something is longer than two or three lines, it will almost always look
better left-aligned.

If you’ve got a few blocks of text you want to center but one of them is a bit
too long, the easiest fix is to rewrite the content and make it shorter:

Not only will it fix the alignment issue, it will make your design feel more
consistent, too.

129 Align with readability in mind

Right-align numbers

If you’re designing a table that includes numbers, right-align them.

When the decimal in a list of numbers is always in the same place, they’re a
lot easier to compare at a glance.

Hyphenate justified text

Justified text looks great in print and can work well on the web when you’re
going for a more formal look, but without special care, it can create a lot of
awkward gaps between words:

Align with readability in mind 130

To avoid this, whenever you justify text, you should also enable hyphenation:

Justified text works best in situations where you’re trying to mimic a print
look, perhaps for an online magazine or newspaper. Even then, left aligned
text works great too, so it’s really just a matter of preference.

131 Align with readability in mind

Use letter-spacing effectively

When styling text, a lot of effort is put into getting the weight, color, and line-
height just right, but it’s easy to forget that letter-spacing can be tweaked,
too.

As a general rule, you should trust the typeface designer and leave letter-
spacing alone. That said, there are a couple of common situations where
adjusting it can improve your designs.

Tightening headlines

When someone designs a font family, they design it with a purpose in mind.

A family like Open Sans is designed to be highly legible even at small sizes,
so the built-in letter-spacing is a lot wider than a family like Oswald which is
designed for headlines.

If you want to use a family with wider letter-spacing for headlines or titles, it
can often make sense to decrease the letter-spacing to mimic the
condensed look of a purpose-built headline family:

Avoid trying to make this work the other way around though — headline
fonts rarely work well at small sizes even if you increase the letter spacing.

133 Use letter-spacing effectively

Improving all-caps legibility

The letter-spacing in most font families is optimized for normal “sentence
case” text — a capital letter followed by mostly lowercase letters.

Lowercase letters have a lot of variety visually. Letters like n, v, and e fit
entirely within a typeface’s x-height, other letters like y, g, and p have
descenders that poke out below the baseline, and letters like b, f, and t have
ascenders that extend above.

All-caps text on the other hand isn’t so diverse. Since every letter is the same
height, using the default letter-spacing often leads to text that is harder to
read because there are fewer distinguishing characteristics between letters.

For that reason, it often makes sense to increase the letter-spacing of all-
caps text to improve readability:

Use letter-spacing effectively 134

Working with Color

Ditch hex for HSL

Hex and RGB are the most common formats for representing color on the
web, but they’re not the most useful.

Using hex or RGB, colors that have a lot in common visually look nothing
alike in code.

HSL fixes this by representing colors using attributes the human-eye
intuitively perceives: hue, saturation, and lightness.

Hue is a color’s position on the color wheel — it’s the attribute of a color that
lets us identify two colors as “blue” even if they aren’t identical.

Hue is measured in degrees, where 0° is red, 120° is green, and 240° is blue.

Saturation is how colorful or vivid a color looks. 0% saturation is grey (no
color), and 100% saturation is vibrant and intense.

Without saturation, hue is irrelevant — rotating the hue when saturation is
0% doesn’t actually change the color at all.

139 Ditch hex for HSL

Lightness is just what it sounds like — it measures how close a color is to
black or to white. 0% lightness is pure black, 100% lightness is pure white,
and 50% lightness is a pure color at the given hue.

HSL vs. HSB

Don’t confuse HSL for HSB — lightness in HSL is not the same than
brightness in HSB.

In HSB, 0% brightness is always black, but 100% brightness is only white
when the saturation is 0%. When saturation is 100%, 100% brightness in HSB
is the same as 100% saturation and 50% lightness in HSL.

Ditch hex for HSL 140

HSB is more common than HSL in design software, but browsers only
understand HSL, so if you’re designing for the web, HSL should be your
weapon of choice.

141 Ditch hex for HSL

You need more colors than you
think

Ever used one of those color palette generators where you pick a starting
color, tweak some options, and are then bestowed the five perfect colors
you should use to build your website?

This calculated approach to picking the perfect color scheme is extremely
seductive, but it’s not very useful unless you want your site to look like this:

What you actually need

You can’t build anything with five hex codes. To build something real, you
need a much more comprehensive set of colors to choose from.

You can break a good color palette down into three categories.

Greys

Text, backgrounds, panels, form controls — almost everything in an interface
is grey.

143 You need more colors than you think

You’ll need more greys than you think, too — three or four shades might
sound like plenty but it won’t be long before you wish you had something a
little darker than shade #2 but a little lighter than shade #3.

In practice, you want 8-10 shades to choose from (more on this in “Define
your shades up front”). Not so many that you waste time deciding between
shade #77 and shade #78, but enough to make sure you don’t have to
compromise too much.

True black tends to look pretty unnatural, so start with a really dark grey and
work your way up to white in steady increments.

You need more colors than you think 144

Primary color(s)

Most sites need one, maybe two colors that are used for primary actions,
active navigation elements, etc. These are the colors that determine the
overall look of a site — the ones that make you think of Facebook as “blue”.

Just like with greys, you need a variety (5-10) of lighter and darker shades to
choose from.

Ultra-light shades can be useful as a tinted background for things like alerts,
while darker shades work great for text.

Accent colors

On top of primary colors, every site needs a few accent colors for
communicating different things to the user.

For example, you might want to use an eye-grabbing color like yellow, pink,
or teal to highlight a new feature:

145 You need more colors than you think

You might also need colors to emphasize different semantic states, like red
for confirming a destructive action:

…yellow for a warning message:

…or green to highlight a positive trend:

You need more colors than you think 146

You’ll want multiple shades for these colors too, even though they should be
used pretty sparingly throughout the UI.

If you’re building something where you need to use color to distinguish or
categorize similar elements (like lines on graphs, events in a calendar, or
tags on a project), you might need even more accent colors.

All in, it’s not uncommon to need as many as ten different colors with 5-10
shades each for a complex UI.

147 You need more colors than you think

Define your shades up front

When you need to create a lighter or darker variation of a color in your
palette, don’t get clever using CSS preprocessor functions like “lighten” or
“darken” to create shades on the fly. That’s how you end up with 35 slightly
different blues that all look the same.

Instead, define a fixed set of shades up front that you can choose from as
you work.

So how do you put together a palette like this anyways?

Choose the base color first

Start by picking a base color for the scale you want to create — the color in
the middle that your lighter and darker shades are based on.

There’s no real scientific way to do this, but for primary and accent colors, a
good rule of thumb is to pick a shade that would work well as a button
background.

It’s important to note that there are no real rules here like “start at 50%
lightness” or anything — every color behaves a bit differently, so you’ll have
to rely on your eyes for this one.

Finding the edges

Next, pick your darkest shade and your lightest shade. There’s no real
science to this either, but it helps to think about where they will be used and
choose them using that context.

The darkest shade of a color is usually reserved for text, while the lightest
shade might be used to tint the background of an element.

A simple alert component is a good example that combines both of these
use cases, so it can be a great place to pick these colors.

149 Define your shades up front

Start with a color that matches the hue of your base color, and adjust the
saturation and lightness until you’re satisfied.

Filling in the gaps

Once you’ve got your base, darkest, and lightest shades, you just need to fill
in the gaps in between them.

For most projects, you’ll need at least 5 shades per color, and probably
closer to 10 if you don’t want to feel too constrained.

Nine is a great number because it’s easy to divide and makes filling in the
gaps a little more straightforward. Let’s call our darkest shade 900, our base
shade 500, and our lightest shade 100.

Start by picking shades 700 and 300, the ones right in the middle of the
gaps. You want these shades to feel like the perfect compromise between
the shades on either side.

This creates four more holes in the scale (800, 600, 400, and 200), which
you can fill using the same approach.

Define your shades up front 150

You should end up with a pretty balanced set of colors that provide just
enough options to accommodate your design ideas without feeling limiting.

What about greys?

With greys the base color isn’t as important, but otherwise the process is the
same. Start at the edges and fill in the gaps until you have what you need.

Pick your darkest grey by choosing a color for the darkest text in your
project, and your lightest grey by choosing something that works well for a
subtle off-white background.

It’s not a science

As tempting as it is, you can’t rely purely on math to craft the perfect color
palette.

A systematic approach like the one described above is great to get you
started, but don’t be afraid to make little tweaks if you need to.

Once you actually start using your colors in your designs, it’s almost
inevitable that you’ll want to tweak the saturation on a shade, or make a
couple of shades lighter or darker. Trust your eyes, not the numbers.

Just try to avoid adding new shades too often if you can avoid it. If you’re not
diligent about limiting your palette, you might as well have no color system
at all.

151 Define your shades up front

Don’t let lightness kill your
saturation

In the HSL color space, as a color gets closer to 0% or 100% lightness, the
impact of saturation is weakened — the same saturation value at 50%
lightness looks more colorful than it does at 90% lightness.

That means that if you don’t want the lighter and darker shades of a given
color to look washed out, you need to increase the saturation as the
lightness gets further away from 50%.

It’s subtle but little details like this add up, especially when a color is being
applied to a large section of a UI.

But what if your base color is already heavily saturated? How do you increase
the saturation if it’s already at 100%?

Use perceived brightness to your advantage

Which of these two colors do you think is lighter?

The yellow, right? Well it turns out both colors actually have the exact same
“lightness” in terms of HSL:

So why do we see the yellow as lighter? Well it turns out that every hue has
an inherent perceived brightness due to how the human eye perceives color.

You can calculate the perceived brightness of a color by plugging its RGB
components into this formula:

153 Don’t let lightness kill your saturation

Taking samples of different hues with 100% saturation and 50% lightness, we
can get a good sense of the perceived brightness of different colors around
the color wheel:

As expected, yellow has a higher perceived brightness than blue. But what’s
interesting here is that perceived brightness doesn’t simply change linearly
from the darkest hue to the lightest hue — instead, there are three separate
local minimums (red, green, and blue) and three local maximums (yellow,
cyan, and magenta).

Changing brightness by rotating hue

On the surface, this is certainly an interesting thing to understand about
color. But things get really interesting when you realize how you can use this
knowledge in your designs.

Don’t let lightness kill your saturation 154

Normally when you want to change how light a color looks, you adjust the
lightness component:

While this does work to lighten or darken a color, you often lose some of the
color’s intensity — the color also looks closer to white or to black, not just
lighter or darker.

Since different hues have a different perceived brightness, another way you
can change the brightness of a color is by rotating its hue.

To make a color lighter, rotate the hue towards the nearest bright hue — 60°,
180°, or 300°.

155 Don’t let lightness kill your saturation

To make a color darker, rotate the hue towards the nearest dark hue — 0°,
120°, or 240°.

This can be really useful when trying to create a palette for a light color like
yellow. By gradually rotating the hue towards more of an orange as you
decrease the lightness, the darker shades will feel warm and rich instead of
dull and brown:

You can of course combine these approaches too, getting some of the
brightness by adjusting the hue and some from adjusting the lightness.

Don’t let lightness kill your saturation 156

While this is a great way to change a color’s brightness without affecting its
intensity, it works best in small doses. Don’t rotate the hue more than 20-30°
or it will look like a totally different color instead of just lighter or darker.

157 Don’t let lightness kill your saturation

Greys don’t have to be grey

By definition, true grey has a saturation of 0% — it doesn’t have any actual
color in it at all.

But in practice, a lot of the colors that we think of as grey are actually
saturated quite heavily:

This saturation is what makes some greys feel cool and other greys feel
warm.

Color temperature

If you’ve ever purchased light bulbs before, you’ve had to make the decision
between “warm white” bulbs that give off a yellow-ish light, and “cool white”
bulbs that give off a blue-ish light.

Saturating greys in a user interface works in a similar same way.

If you want your greys to feel cool, saturate them with a bit of blue:

To give your greys a warmer feel, saturate them with a bit of yellow or
orange:

159 Greys don’t have to be grey

To maintain a consistent temperature, don’t forget to increase the saturation
for the lighter and darker shades. If you don’t, those shades will look a bit
washed out compared to the greys that are closer to 50% lightness.

How much you want to saturate your greys is completely up to you — add
just a little if you only want to tip the temperature slightly, or crank it up if
you want the interface to lean strongly in one direction or the other.

Greys don’t have to be grey 160

161 Greys don’t have to be grey

Accessible doesn’t have to mean
ugly

To make sure your designs are accessible, the Web Content Accessibility
Guidelines (WCAG) recommend that normal text (under ~18px) has a contrast
ratio of at least 4.5:1, and that larger text has a contrast ratio of at least 3:1.

For typical dark-text-on-a-light-background situations, meeting this
recommendation is pretty easy, but it gets a lot trickier when you start
working with color.

https://webaim.org/resources/contrastchecker/

Flipping the contrast

When using white text on a colored background, you’d be surprised how
dark the color often needs to be to meet that 4.5:1 contrast ratio.

This can create hierarchy issues when those elements aren’t supposed to be
the focus of the page — dark colored backgrounds will really grab the user’s
attention.

163 Accessible doesn’t have to mean ugly

You can solve this problem by flipping the contrast. Instead of using light
text on a dark colored background, use dark colored text on a light colored
background:

The color is still there to help support the text, but it’s way less in-your-face
and doesn’t interfere as much with other actions on the page.

Rotating the hue

Even harder than white text on a colored background is colored text on a
colored background. You’ll run into this situation if you’re ever trying to pick
a color for some secondary text inside a dark-colored panel.

If you start by taking the background color and simply adjusting the
lightness and saturation, you’ll find that it’s hard to meet the recommended
contrast ratio without getting very close to pure white.

Accessible doesn’t have to mean ugly 164

You don’t want the primary text and the secondary text to look the same, so
what else can you do?

Well since some colors are brighter than others, one way to increase the
contrast without getting closer to white is to rotate the hue towards a
brighter color, like cyan, magenta, or yellow.

This can make it a lot easier to make the text accessible while still keeping it
colorful.

165 Accessible doesn’t have to mean ugly

Don’t rely on color alone

Color can be a fantastic way to enhance information and make it easier to
understand, but be careful not to rely on it, or users with color blindness will
have a hard time interpreting your UI.

Take these metric cards for example. With this design, someone who is red-
green colorblind can’t easily tell if a metric has gotten better or worse:

An easy fix for this is to also communicate that information in some other
way, like by adding icons to indicate if the change is positive or negative.

What about something like a graph, where each trend line has a different
color?

In situations like this, try relying on contrast instead of using completely
different colors. It’s much easier for someone who’s colorblind to tell the

167 Don’t rely on color alone

difference between light and dark than it is for them to tell the difference
between two distinct colors.

Always use color to support something that your design is already saying;
never use it as the only means of communication.

Don’t rely on color alone 168

Creating Depth

Emulate a light source

Have you ever noticed how some elements in an interface feel like they’re
raised off of the page, while others feel like they are inset into the
background?

Creating this effect might look complicated at first, but it actually only
requires you to understand one fundamental rule.

Light comes from above

Take a look at the panelling on this door:

Even though you’re just looking at a flat image, it’s still pretty obvious that
the panels on the door are raised. Why is that?

Notice how the top edge of the panel is lighter? That’s because it’s angled
towards the sky and receives more light. Similarly, the bottom edge is darker
because it’s angled away from the sky, receiving less light.

The only way those edges could possibly be oriented that way is if the panel
itself is raised, so that’s how our brains perceive it.

173 Emulate a light source

Now take a look at the panelling on this cabinet:

In this case it’s clear that the panels are inset because there’s a shadow at
the top indicating that the lip above is blocking the light, and the bottom
edge is lighter, indicating that it’s angled upward.

To create this same sense of depth in your designs, all you need to do is
mimic the way light affects things in the real world.

Emulate a light source 174

Simulating light in a user interface

If you want an element to appear raised or inset, first figure out what profile
you want that element to have, then mimic how a light source would interact
with that shape.

Raised elements

For example, say you had a button and you wanted it to feel raised off of the
page, with perfectly flat edges on the top and bottom:

Because the top and bottom edges are both flat, it would be impossible to
see both of them at the same time. People generally look slightly downward
towards their screens, so for the most natural look, reveal a little bit of the
top edge and hide the bottom edge.

Since the top edge is facing upward, make it slightly lighter than the face of

175 Emulate a light source

the button, usually using a top border or an inset box shadow with a slight
vertical offset:

Choose the lighter color by hand instead of using a semi-transparent white
for best results — simply overlaying white can suck the saturation out of the
underlying color.

Next, you need to account for the fact that a raised element will block some
of the light from reaching the area below the element.

Do this by adding a small dark box shadow with a slight vertical offset (you
only want the shadow to appear below the element):

Don’t get carried away with the blur radius, a couple of pixels is plenty. These

Emulate a light source 176

sorts of shadows should have pretty sharp edges — take a look at the
shadow cast by the bottom of a wall outlet or window frame for a real-world
example.

Inset elements

Say you’re designing a “well” component that should feel like it’s recessed
into the page.

Looking slightly downward, only the bottom lip would be visible. Since it’s
facing towards the sky, give that edge a slightly lighter color using a bottom
border or inset shadow with a negative vertical offset:

177 Emulate a light source

The area above the well should block some of the light from reaching the
very top of the well, so add a small dark inset box shadow with a slight
positive vertical offset to make sure it doesn’t poke through at the bottom:

This same treatment works for any element that may need to appear inset,
for example text inputs and checkboxes:

Emulate a light source 178

Don’t get carried away

Once you understand how to simulate light in an interface, it can be
tempting to tinker away for hours, tweaking and tweaking to see how closely
you can mimic the real world.

While this can be a fun exercise, in practice it can lead to interfaces that are
busy and unclear. Borrowing some visual cues from the real world is a great
way to add a bit of depth, but there’s no need to try and make things look
photo-realistic.

179 Emulate a light source

Use shadows to convey elevation

Shadows can be more than just a flashy effect — used thoughtfully, they let
you position elements on a virtual z-axis to create a meaningful sense of
depth.

Small shadows with a tight blur radius make an element feel only slightly
raised off of the background, while larger shadows with a higher blur radius
make an element feel much closer to the user:

The closer something feels to the user, the more it will attract their focus.

You might use a smaller shadow for something like a button, where you want
the user to notice it but don’t want it to dominate the page:

Medium shadows are useful for things like dropdowns; elements that need
to sit a bit further above the rest of the UI:

181 Use shadows to convey elevation

Large shadows are great for modal dialogs, where you really want to capture
the user’s attention:

Establishing an elevation system

Just like with color, typography, spacing, and sizing, defining a fixed set of
shadows will speed up your workflow and help maintain consistency in your
designs.

You don’t need a ton of different shadows — five options is usually plenty.

Use shadows to convey elevation 182

Start by defining your smallest shadow and your largest shadow, then fill in
the middle with shadows that increase in size pretty linearly:

Combining shadows with interaction

Shadows aren’t only useful for positioning elements on the z-axis statically;
they’re a great way to provide visual cues to the user as they interact with
elements, too.

For example, say you had a list of items where the user could click and drag
each item to sort them. Adding a shadow to an item when a user clicks it
makes it feel like it pops forward above the other items in the list, and makes
it clear to the user that they can drag it:

183 Use shadows to convey elevation

Similarly, you can make a button feel like it’s being pressed into the page
when a user clicks it by switching to a smaller shadow, or perhaps removing
the shadow altogether:

Using shadows in a meaningful way like this is a great way to hack the
process of choosing what sort of shadow an element should have. Don’t
think about the shadow itself, think about where you want the element to sit
on the z-axis and assign it a shadow accordingly.

Use shadows to convey elevation 184

185 Use shadows to convey elevation

Shadows can have two parts

Ever inspected a really nice shadow on a site and noticed they were actually
using two shadows?

There’s a method to this madness, and it’s actually pretty simple and makes a
lot of sense.

When you see someone combining two shadows, they’re not just
experimenting randomly until things look nice, they’re using each shadow to
do a specific job.

The first shadow is larger and softer, with a considerable vertical offset and
large blur radius. It simulates the shadow cast behind an object by a direct
light source.

The second shadow is tighter and darker, with less of a vertical offset and a
smaller blur radius. It simulates the shadowed area underneath an object
where even ambient light has a hard time reaching.

Using two shadows like this gives you a lot more control than you’d get with
a single shadow — you can keep the larger shadow nice and subtle while still

187 Shadows can have two parts

making the shadow closer the element’s edges nice and defined.

Accounting for elevation

As an object gets further away from a surface, the small, dark shadow
created by a lack of ambient light slowly disappears (go ahead, try it out with
something on your desk).

Shadows can have two parts 188

So if you’re going to use this two-shadow technique in your own projects,
make sure you make that shadow more subtle for shadows that represent a
higher elevation.

It should be quite distinct for your lowest elevation, and almost (or
completely) invisible at your highest elevation.

189 Shadows can have two parts

Even flat designs can have depth

When most people talk about “flat design”, they mean designing without
shadows, gradients, or any other effects that try to mimic how light interacts
with things in the real-world.

But the most effective flat designs still convey depth, they just do it in a
different way.

Creating depth with color

In general (especially with shades of the same color), lighter objects feel
closer to us and darker objects feel further away.

Make an element lighter than the background color to make it feel like it’s
raised off of the page, or darker than the background color if you want it to
feel inset like a well:

This is just as applicable to non-flat designs, too — color is just another tool
in your toolbelt for conveying distance.

191 Even flat designs can have depth

Using solid shadows

Another way to communicate depth in a flat design is to use short, vertically
offset shadows with no blur radius at all.

It’s a great way to make a card or button stand off the page a little bit without
sacrificing that flat aesthetic.

Even flat designs can have depth 192

193 Even flat designs can have depth

Overlap elements to create layers

One of the most effective ways to create depth is to overlap different
elements to make it feel like a design has multiple layers.

For example, instead of containing a card entirely within another element,
offset it so it crosses the transition between two different backgrounds:

You could also make an element taller than its parent, so it overlaps on both
sides:

Overlapping elements can add depth to smaller components too, for
example the controls on this carousel:

Overlapping images

This technique can work great with images as well, but without special

195 Overlap elements to create layers

consideration it’s easy for overlapping images to clash.

A simple trick for avoiding this is to give the images an “invisible border” —
one that matches the background color — so there’s always a bit of a gap
between images:

You’ll still create the appearance of layers but with none of the ugly clashing.

Overlap elements to create layers 196

Working with Images

Use good photos

Bad photos will ruin a design, even if everything else about it looks great.

If your design needs photography and you’re not a talented photographer,
you’ve got two options:

1. Hire a professional photographer.

If you need very specific photos for your project, entrust a professional.
Taking great photos isn’t just about using an expensive camera, it’s
about lighting, composition, color — skills that take years to develop.

2. Use high quality stock photography.

If your needs are more generic, there are tons of great resources out
there where you can purchase great stock photos. There are even sites
like Unsplash that offer beautiful photography for free.

Whatever you do, don’t design using placeholder images and expect to be
able to take some photos with your smartphone and swap them in later. It
never works.

201 Use good photos

Text needs consistent contrast

Ever tried to slap a headline on a big hero image, only to find that no matter
what color you tried for the text, it was still hard to read?

That’s because the problem isn’t the text, it’s the image.

The problem with background images

Photos can be very dynamic, with a lot of really light areas, and a lot of really
dark areas. White text might look great in the dark areas, but it gets lost in
the light areas. Dark text looks great in the light areas, but gets lost in the
dark areas.

To solve this problem, you need to reduce the dynamics in the image to
make the contrast between the text and the background more consistent.

Add an overlay

One way to increase the overall text contrast is to add a semi-transparent
overlay to the background image.

203 Text needs consistent contrast

A black overlay will tone down the light areas and help light text stand out,
while a white overlay will brighten up the dark areas and help dark text stand
out.

Lower the image contrast

One of the compromises you make when using an overlay is that you’re
lightening or darkening the whole image, not just the problem areas.

If you want more control, another solution is to lower the contrast of the
image itself:

Lowering the contrast will change how light or dark the image feels overall,
so make sure to adjust the brightness to compensate.

Text needs consistent contrast 204

Colorize the image

Another way to help text stand out against an image is to colorize the image
with a single color.

Some photo editing software includes this as a first-class feature, but if
yours doesn’t, you can create this effect in three steps:

1. Lower the image contrast, to balance things out a bit.

2. Desaturate the image, to remove any existing color.

3. Add a solid fill, using the “multiply” blend mode.

This can also be a great way to make a background image pair more nicely
with your existing brand colors.

205 Text needs consistent contrast

Add a text shadow

If you want to preserve a bit more of the dynamics in a background image, a
text shadow can be a great way to increase contrast only where you need it
most.

You want it to look more like a subtle glow than an actual shadow, so use a
large blur radius and don’t add any kind of offset.

It’s still a good idea to reduce the overall image contrast, but combining that
with a text shadow means you can reduce it a little less.

Text needs consistent contrast 206

207 Text needs consistent contrast

Everything has an intended size

Everyone knows that scaling bitmap images to larger than their original size
is a bad idea — they immediately feel “fuzzy” and lose their definition.

But that’s not the only way you can go wrong with scaling, even when you
think you’re playing it safe.

Don’t scale up icons

If you’re designing something that could use some large icons (like maybe
the “features” section of a landing page), you might instinctively grab your
favorite SVG icon set and bump up the size until they fit your needs.

They’re vector images after all, so the quality isn’t going to suffer if you
increase the size, right?

While it’s true that vector images won’t degrade in quality when you increase
their size, icons that were drawn at 16–24px are never going to look very
professional when you blow them up to 3x or 4x their intended size. They
lack detail, and always feel disproportionately “chunky”.

If small icons are all you’ve got, try enclosing them inside another shape and
giving the shape a background color:

This lets you keep the actual icon closer to its intended size, while still filling
the larger space.

209 Everything has an intended size

Don’t scale down screenshots

Say you want to include a screenshot of your app on that same features
page.

If you take a full-size screenshot and shrink it by 70% to make it fit, you’ll end
up with an image that’s trying to cram way too much detail into far too little
space.

The 16px font in your app becomes a 4px font in your screenshot, and
visitors will be squinting with their eyeballs two inches from the screen,
struggling to make out what all that text says.

If you want to include a detailed screenshot in your design, take the
screenshot at a smaller screen size (like maybe your tablet layout) and save a

Everything has an intended size 210

lot of space for it so you don’t have to shrink it as much:

Or consider taking just a partial screenshot, so you can display it in less
space without needing to scale it down:

211 Everything has an intended size

If you really need to fit a whole-app screenshot in a tight space, try drawing
a simplified version of the UI with details removed and small text replaced
with simple lines:

It’ll still communicate the big-picture design without tempting visitors to try
and make out all of the details.

Don’t scale down icons, either

Just as icons drawn to be used at 16px look chunky when you scale them up,
icons intended to be used at larger sizes look choppy and fuzzy when you
scale them down.

The most extreme example of this are favicons, those little icons you see
next to the page title in a browser tab.

If you try to shrink a logo drawn at 128px down to favicon size, it all turns to

Everything has an intended size 212

mush as the browser tries its best to render all of that detail in a tiny 16px
square:

A better approach is to redraw a super simplified version of the logo at the
target size, so you control the compromises instead of leaving it up to the
browser:

213 Everything has an intended size

Beware user-uploaded content

When you’re depending on user-uploaded images, you don’t have the luxury
of fine-tuning contrast, carefully adjusting colors, or cropping the perfect
frame.

While you’ll always be at your users’ mercy to some extent, there are a few
things you can do to make sure their content doesn’t completely undermine
your design.

Control the shape and size

Displaying user-uploaded images at their intrinsic aspect ratio can really
throw off a layout, especially if there are a lot of images on the screen at
once.

Instead of letting users wreak havoc on your page structure, center their
images inside fixed containers, cropping out anything that doesn’t fit.

This is really easy to do with CSS these days by making the image a
background image, and setting the background-size property to cover.

215 Beware user-uploaded content

Prevent background bleed

When a user provides an image with a background color that’s similar to the
background in your UI, the image and the background can bleed together,
causing the image to lose its shape.

Instead of trying to solve this with a border, try using a subtle inner box
shadow:

Beware user-uploaded content 216

Borders will often clash with the colors in the image, while most people will
barely even realize the shadow is there.

If you don’t like the slight “inset” look you get from using a box shadow, a
semi-transparent inner border works great, too.

217 Beware user-uploaded content

Finishing Touches

Supercharge the defaults

You don’t always have to add new elements to a design to add flare — there
are a lot of ways to liven up a page by “supercharging” what’s already there.

For example, if your design includes a bulleted list, try replacing the bullets
with icons:

Checkmarks and arrows are great generic choices for a lot of situations, but
you can also use something more specific to your content, like a padlock
icon for a list of security-related features:

Similarly, if you’re working on a testimonial try “promoting” the quotes into
visual elements by increasing the size and changing the color:

Links are another great candidate for special styling. You can do something
as simple as changing the color and font weight, or something as fancy as a
thick and colorful custom underline that partially overlaps the text:

221 Supercharge the defaults

If you’re working on a form, using custom checkboxes and radio buttons is
an easy way to add some color to the design:

Just using one of your brand colors for the selected states instead of the
browser defaults is often enough to take something from feeling boring to
feeling polished and well-designed.

Supercharge the defaults 222

223 Supercharge the defaults

Add color with accent borders

If you’re not a graphic designer, how do you add that dash of visual flair to
your UI that other designs get from beautiful photography or colorful
illustrations?

One simple trick that can make a big difference is to add colorful accent
borders to parts of your interface that would otherwise feel a bit bland.

For example, across the top of a card:

…or to highlight active navigation items:

…or along the side of an alert message:

…or as a short accent underneath a headline:

225 Add color with accent borders

…or even across the top of your entire layout:

It doesn’t take any graphic design talent to add a colored rectangle to your
UI, and it can go a long way towards making something feel more
“designed.”

Add color with accent borders 226

227 Add color with accent borders

Decorate your backgrounds

Even if you do a great job with hierarchy, spacing, and typography,
sometimes a design will still feel a little bit plain.

A great way to break up some of the monotony without drastically altering
the design is to add some excitement to a few of your backgrounds.

Change the background color

One way to add some excitement to a background is to simply change the
color.

This works great for emphasizing an individual panel, as well as for adding
some distinction between entire page sections.

For a more energetic look, you could even use a slight gradient:

For best results, use two hues that are no more than about 30° apart.

229 Decorate your backgrounds

Use a repeating pattern

Another approach is to add a subtle repeatable pattern, like this one from
Hero Patterns:

You don’t have to necessarily repeat it across the entire background, either
— a pattern designed to repeat along a single edge can look great, too.

Keep the contrast between the background and the pattern pretty low to
ensure readability.

Decorate your backgrounds 230

http://www.heropatterns.com/

Add a simple shape or illustration

Instead of decorating an entire background, you can also try including an
individual graphic or two in specific positions.

Simple geometric shapes work well for this:

…as do small chunks of a repeatable pattern:

231 Decorate your backgrounds

You can even do something more complex, like a simplified world map:

Just like with a full background pattern, it’s best to keep the contrast low so
nothing interferes with the content.

Decorate your backgrounds 232

233 Decorate your backgrounds

Don’t overlook empty states

Imagine you’re designing a new feature for an app you’re working on.

You’ve spent a ton of time crafting the perfect realistic sample data, picking
out usernames and avatars, and putting together a beautiful and electrifying
screen.

You code it all up and deploy it to production. But when an excited user
clicks the new item in the nav, they see this:

If you’re designing something that depends on user-generated content, the
empty state should be a priority, not an afterthought.

Try incorporating an image or illustration to grab the user’s attention, and
emphasizing the call-to-action to encourage them to take the next step:

235 Don’t overlook empty states

If you’re working on something that has a bunch of supporting UI like tabs or
filters, consider hiding that stuff entirely. There’s no point in presenting a
bunch of actions that don’t do anything until the user has created some
content.

Empty states are a user’s first interaction with a new product or feature. Use
them as an opportunity to be interesting and exciting — don’t settle for plain
and boring.

Don’t overlook empty states 236

237 Don’t overlook empty states

Use fewer borders

When you need to create separation between two elements, try to resist
immediately reaching for a border.

While borders are a great way to distinguish two elements from one another,
they aren’t the only way, and using too many of them can make your design
feel busy and cluttered.

Use a box shadow

Box shadows do a great job of outlining an element like a border would, but
can be more subtle and accomplish the same goal without being as
distracting.

This approach works best when the element you are applying the box
shadow to is not the same color as the background.

239 Use fewer borders

Use two different background colors

Giving adjacent elements slightly different background colors is usually all
you need to create distinction between them.

If you’re already using different background colors in addition to a border, try
removing the border; you might not need it.

Use fewer borders 240

Add extra spacing

What better way to create separation between elements than to simply
increase the separation?

Spacing things further apart is a great way to create distinction between
groups of elements without introducing any new UI at all.

241 Use fewer borders

Think outside the box

Most people have a lot of preconceived notions about how certain
components are supposed to look. But just because we’ve been conditioned
to believe that there’s only one way to design a particular component,
doesn’t mean it’s true.

For example, picture a dropdown menu. You’re probably picturing a white
box with a bit of a drop shadow and a list of links stacked inside of it:

But who says a dropdown needs to be a boring list of links? It’s just a floating
box on the screen, you can do anything you want with it.

Break it into sections, use multiple columns, add supporting text or colorful
icons — do something fun with it!

And don’t just stop at dropdowns; what about something like a table?

243 Think outside the box

When you imagine a table, you probably think of columns that each contain
one specific piece of data:

Tables don’t have to work this way, though — if a column doesn’t need to be
sortable, there’s no reason you can’t combine it with a related column and
introduce some interesting hierarchy:

Think outside the box 244

Table content doesn’t have to be plain text, either. Add images if it makes
sense, or introduce some color to enrich the existing data:

How about radio buttons? There’s nothing more boring than a stack of labels
with little circles next to them.

245 Think outside the box

If a set of radio buttons are an important part of the UI you’re designing, try
something like selectable cards instead:

Don’t let your existing beliefs hold back your designs — constraints are
powerful but sometimes a bit of freedom is just what you need to take an
interface to the next level.

Think outside the box 246

Leveling Up

Leveling up

Hopefully after reading this book you feel much more confident in your
ability to make something look awesome, without relying on a designer. But
even though we’ve tried our best to cram in every good idea we could
possibly think of, there will always be more out there to learn.

Here are two of the best ways you can continue to hone your skills, and add
new tools to your toolbelt.

Look for decisions you wouldn’t have made

Whenever you stumble across a design you really like, ask yourself:

“Did the designer do anything here that I never would have thought to do?”

Maybe it’s the way they inverted the background color on a datepicker:

…or the way they positioned a button within a text input instead of on the
outside:

…or something as simple as using two different font colors for a headline:

Paying attention to these sorts of unintuitive decisions is a great way to
discover new ideas that you can apply to your own designs.

Rebuild your favorite interfaces

The absolute best way to notice the little details that make a design look

251 Leveling up

really polished is to recreate that design from scratch, without peeking at the
developer tools.

When you’re trying to figure out why your version looks different than the
original, you’ll discover tricks like “reduce your line height for headings”,
“add letter-spacing to uppercase text”, or “combine multiple shadows” all on
your own.

By continually studying the work that inspires you with a careful eye, you’ll
be picking up design tricks for years to come.

— Adam Wathan & Steve Schoger

Leveling up 252

	Starting from Scratch
	Start with a feature, not a layout
	Detail comes later
	Hold the color
	Don’t over-invest

	Don’t design too much
	Work in cycles
	Be a pessimist

	Choose a personality
	Font choice
	Color
	Border radius
	Language
	Deciding what you actually want

	Limit your choices
	Define systems in advance
	Designing by process of elimination
	Systematize everything

	Hierarchy is Everything
	Not all elements are equal
	Size isn’t everything
	Don’t use grey text on colored backgrounds
	Emphasize by de-emphasizing
	Labels are a last resort
	You might not need a label at all
	Combine labels and values
	Labels are secondary
	When to emphasize a label

	Separate visual hierarchy from document hierarchy
	Balance weight and contrast
	Using contrast to compensate for weight
	Using weight to compensate for contrast

	Semantics are secondary
	Destructive actions

	Layout and Spacing
	Start with too much white space
	White space should be removed, not added
	Dense UIs have their place

	Establish a spacing and sizing system
	A linear scale won’t work
	Defining the system
	Using the system

	You don’t have to fill the whole screen
	Shrink the canvas
	Thinking in columns
	Don’t force it

	Grids are overrated
	Not all elements should be fluid
	Don’t shrink an element until you need to

	Relative sizing doesn’t scale
	Relationships within elements

	Avoid ambiguous spacing

	Designing Text
	Establish a type scale
	Choosing a scale
	Modular scales
	You end up with fractional values.
	You usually need more sizes.
	Hand-crafted scales

	Avoid em units

	Use good fonts
	Play it safe
	Ignore typefaces with less than five weights
	Optimize for legibility
	Trust the wisdom of the crowd
	Steal from people who care
	Developing your intuition

	Keep your line length in check
	Dealing with wider content

	Baseline, not center
	Line-height is proportional
	Accounting for line length
	Accounting for font size

	Not every link needs a color
	Align with readability in mind
	Don’t center long form text
	Right-align numbers
	Hyphenate justified text

	Use letter-spacing effectively
	Tightening headlines
	Improving all-caps legibility

	Working with Color
	Ditch hex for HSL
	HSL vs. HSB

	You need more colors than you think
	What you actually need
	Greys
	Primary color(s)
	Accent colors

	Define your shades up front
	Choose the base color first
	Finding the edges
	Filling in the gaps
	What about greys?
	It’s not a science

	Don’t let lightness kill your saturation
	Use perceived brightness to your advantage
	Changing brightness by rotating hue

	Greys don’t have to be grey
	Color temperature

	Accessible doesn’t have to mean ugly
	Flipping the contrast
	Rotating the hue

	Don’t rely on color alone

	Creating Depth
	Emulate a light source
	Light comes from above
	Simulating light in a user interface
	Raised elements
	Inset elements

	Don’t get carried away

	Use shadows to convey elevation
	Establishing an elevation system
	Combining shadows with interaction

	Shadows can have two parts
	Accounting for elevation

	Even flat designs can have depth
	Creating depth with color
	Using solid shadows

	Overlap elements to create layers
	Overlapping images

	Working with Images
	Use good photos
	Text needs consistent contrast
	The problem with background images
	Add an overlay
	Lower the image contrast
	Colorize the image
	Add a text shadow

	Everything has an intended size
	Don’t scale up icons
	Don’t scale down screenshots
	Don’t scale down icons, either

	Beware user-uploaded content
	Control the shape and size
	Prevent background bleed

	Finishing Touches
	Supercharge the defaults
	Add color with accent borders
	Decorate your backgrounds
	Change the background color
	Use a repeating pattern
	Add a simple shape or illustration

	Don’t overlook empty states
	Use fewer borders
	Use a box shadow
	Use two different background colors
	Add extra spacing

	Think outside the box

	Leveling Up
	Leveling up
	Look for decisions you wouldn’t have made
	Rebuild your favorite interfaces

